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Abstract

Malus Xrobusta 5, which has been the subject of extensive fire blight resistance research over time, is highly resistant
or susceptible to the fire blight-causative bacterial pathogen, Erwinia amylovora — depending on the strain. M. Xrobusta
5 has been crossed with susceptible apple cultivars and rootstocks, and inoculated with several E. amylovora strains in
order to study the genetics and mechanism of its fire blight resistance and susceptibility. A strong resistance QTL was
first mapped on linkage group 3 (LG3) of M. Xrobusta 5 using an F1 progeny derived from a cross with the apple cul-
tivar ‘Idared’ in Germany. This QTL was confirmed in two other F1 populations derived from crossing M. Xrobusta 5
with the rootstock ‘Malling 9’ in New Zealand, and with ‘Ottawa 3’ in the USA. A second QTL on LG7 was detected in
the ‘Idared’ X M. Xrobusta 5 population but only with strains that break the LG3 QTL. However, in the US population
of ‘Ottawa 3” X M. xrobusta 5, the LG7 QTL was detected regardless of strain-specificity, unlike in the New Zealand
population of ‘Malling 9’ X M. Xrobusta 5 where the LG7 QTL was not also detected. Here, we report the detection of
the LG7 QTL in a different ‘Malling 9° X M. Xrobusta 5 population in Germany, and confirm the independence of the
LG7 locus to E. amylovora strains.
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The most destructive bacterial disease of the genus Malus,
i.e. the domesticated apple (Malus X domestica Borkh.) and
its wild relatives — usually referred to as crabapples (Fiala
1994), is fire blight, caused by Erwinia amylovora (Burrill)
(Winslow et al. 1920). A variability of resistance/suscepti-
bility to fire blight is found in Malus, and largely depends on
the strain of the pathogen (Vogt et al. 2013; Emeriewen et al.
2019). Whilst most cultivars of the domesticated apple are
highly susceptible to fire blight, a few wild apple genotypes
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possess strong resistance (Peil et al. 2021). Resistance
breeding is generally thought to be the most eco-friendly
solution to fire blight epidemics, especially in Europe where
the use of antibiotics is forbidden. Hence, enormous efforts
have been invested into breeding research over the last two
decades to understand the genetics of susceptibility and
resistance to E. amylovora and to identify Malus resistance
donors (Emeriewen et al. 2019; Peil et al. 2021). These stud-
ies, amongst other things, involved raising biparental popu-
lations and artificially inoculating mainly scions of grafted
Malus plants although the primary infection site of E. amy-
lovora in the orchard is through the flowers (Norelli et al.
2003). The reason for mainly inoculating grafted scions in
the greenhouse is the long juvenile period of apple (Hanke
et al. 2020). In addition, artificial inoculation of flowers in
the field is much more time consuming and strictly restricted
to only very few approved sites. Nonetheless, data obtained
were sufficient to identify resistance donors, and also reli-
able for quantitative trait locus (QTL) analyses leading to
the identification of QTLs in some apple cultivars (Calenge
et al. 2005; LeRoux et al. 2010; Desnoues et al. 2018; van
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de Weg et al. 2018; Kostick et al. 2021) and in wild apple
genotypes, regardless of whether grafted scions or flowers
were inoculated (Peil et al. 2007, 2019; Durel et al. 2009;
Emeriewen et al. 2014, 2017a, b), as well as identifying fire
blight resistance candidate genes in Malus (Parravicini et
al. 2011; Fahrentrapp et al. 2013; Emeriewen et al. 2018,
2021, 2022).

The crabapple, Malus Xrobusta 5, is known in Germany
by its accession number MAL0991 as Mr5 and in the USA
by its accession number PI588825 as ‘R5’ (Wohner et al.
2014b). It is the model genotype for fire blight resistance
research as significant progress has been achieved in under-
standing the genetics of its resistance and interaction with
E. amylovora. Firstly, the strongest fire blight resistance
QTL in Malus explaining 80% of phenotypic variance in
an ‘Idared’ X Mr5 F1 progeny established at the Institute
of Breeding Research on Fruit Crops, Germany, was identi-
fied on linkage group 3 (LG3) of Mr5 (Peil et al. 2007).
This QTL was confirmed in two other genetic backgrounds
using F1 progeny of ‘Malling 9° (M.9) X ‘R5’ in New Zea-
land, and ‘Ottawa3’ (‘03”) x ‘R5’ in USA (Gardiner et al.
2012). Peil et al. (2011) then reported that this major QTL
on LG3 was completely broken down after inoculation of
the same ‘Idared” X Mr5 F1 progeny with a highly viru-
lent Canadian strain, Ea3049. Wohner et al. (2014a) later
confirmed this break down and reported that a few minor
QTLs on LGs 5, 7, 11 and 14 were instead identified with
Ea3049. Vogt et al. (2013) showed that a single nucleotide
polymorphism (SNP) in E. amylovora effector aviRpt2;,
amino acid sequence whereby cysteine (C-allele) changes
to serine (S-allele) at position 156, as well as the complete
knockout of avrRpt2, was responsible for the breakdown
of Mr5 fire blight resistance and the corresponding QTL on
LG3, thus establishing the first gene-for-gene interaction
between a Malus genotype and E. amylovora. Wild type
strains that broke down the LG3 QTL of Mr5 thus possessed
the S-allele. In contrast to Mr5 LG3 QTL, the LG7 QTL was
detected only with the S-allele strain in the ‘Idared’ X Mr5
F1 progeny, which suggests that the LG7 QTL is dependent
on the avrRpt2;, SNP (Wohner et al. 2014a). However,
this was not the case with the ‘O3’ X ‘R5’ F1 progeny. As
previously reported in Gardiner et al. (2012), the QTL on
LG7 was evident and significant with both Ea273 (C-allele
strain) and E2002a (S-allele strain; synonym of Ea3049)
(Vogt et al. 2013).

Here, we report the identification of Mr5 LG7 QTL with
a C-allele strain in Germany for the first time in an M.9
X Mr5 F1 progeny. This QTL was not identified in an F1
progeny with both parents in New Zealand (Gardiner et
al. 2012), thus making this discovery interesting. We also
provide interaction analyses on the QTLs of Mr5 using the
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‘03’ X ‘RS’ population established in the US (Gardiner et
al. 2012).

A recent cross between the fire blight susceptible root-
stock M.9 and Mr5 in Germany resulted in 138 F1 progeny
individuals. It was possible to carry out two independent
phenotypic evaluations in 60% of this F1 individuals. Arti-
ficial inoculation was performed on individuals growing on
their own roots, and which were at least 25 cm in height,
using E. amylovora strain Ea222 — carrying the C-allele of
the effector avrRpt2;, (Vogt et al. 2013). Inoculation was
done by cutting the youngest leaves with a pair of scissors
dipped into inoculum of 10° cfu/ml concentration. Disease
incidence i.e. length of shoot necrosis was measured 28
days post inoculation (dpi) and converted to percent lesion
length (PLL) by dividing the length of necrotic shoot by
the total shoot length and multiplied by 100 as described
elsewhere (Peil et al. 2019). Five replicates of each indi-
vidual were artificially inoculated for the respective pheno-
typic evaluations. The PLL of individuals resulting from the
two independent inoculation experiments were subjected to
Pearson’s correlation analysis. Furthermore, the M.9 X Mr5
population was genotyped-by-sequencing (GBS) in order to
generate de novo SNP markers (Reim et al. 2023). The pro-
cedure, parameters and filtering employed for GBS analyses
on the population are similar to the procedures previously
reported for another Malus wild species — M. fusca (Emer-
iewen et al. 2020). In addition, microsatellite (SSR) markers
were applied to the population to serve as anchor markers.
Both SNP and SSR markers were used to develop a genetic
map for the M.9 X Mr5 population using the Kosambi func-
tion in JoinMap® software (Ooijen 2006, 2018). Genotype—
phenotype association analyses and quantitative trait locus
(QTL) mapping were performed using Kruskal-Wallis anal-
ysis and Interval mapping modules on MapQTL 5 software
(Ooijen 2004). Permutation test to determine significance of
QTL was calculated using MapQTL 5.

A Pearson’s pairwise correlation of the PLLs obtained for
the independent inoculation experiments of the progenies
is presented in Fig. la, and shows strong correlation coef-
ficient and coefficient of determination (r=0.92; r* =0.84).
The average PLL of the inoculated individuals for the two
independent experiments were 14.1% and 15.6%, with 79%
and 67% recorded respectively as the highest PLLs. Several
individuals in both experiments showed no disease symp-
toms indicating strong resistance to this strain like Mr5. The
distribution of the average PLLs of both independent inocu-
lation experiments of the individuals is shown in Fig. 1b.
Genotypic data of the 138 F1 individuals were used for
genetic mapping. The genetic maps constructed for M.9
and Mr5 using GBS-derived de novo SNP markers and SSR
anchor markers comprised of 17 linkage groups each with
2139 loci and 2989 loci for the parental maps of M.9 and
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Mr5, respectively. Whilst the M.9 map spanned 1255.17 cM
with an average length of 73.83 cM, the Mr5 map spanned
1097.69 cM with an average length of 64.57 cM (results not
shown). The average PLL of the replicates of each progeny
for both experiments and the map data of each parent were
used for genotype — phenotype association analysis and for
QTL mapping. Kruskal-Wallis analysis with the genetic
map of the susceptible parent i.e. M.9, did not show any
significance between mapped loci and fire blight pheno-
typic data of the F1 progeny. In contrast, markers on LG3
and LG7 of Mr5 correlated significantly with fire blight
resistance levels in the F1 progeny. Table 1 shows mark-
ers with the highest significance in both LGs including the
differences of PLL calculated for the progenies possessing
alleles of the markers linked to resistance and susceptibility.
Markers on LG3 of Mr5 showed the highest correlation with
phenotypic data. With significance set at a LOD of 4.3 with
a confidence level of 95% following permutation test, two

r2=0.84;r=0.92

T

30.0 40.0 50.0 60.0 70.0 80.0 90.0

100.0
PLL Evaluation 2

F1 progeny individuals

QTLs were detected on LGs 3 and 7. The LOD plot for LG3
(not shown) positions the QTL at the top region similar to
previous reports (Peil et al. 2007; Fahrentrapp et al. 2013).
The QTL on LG7 is situated between markers EMPc117 at
35 ¢cM and SNP 50982 at 51 cM (Fig. 2). This is a simi-
lar region to the LG7 QTL reported in ‘O3’ X ‘RS’ popula-
tion (Gardiner et al. 2012). The Mr5 genetic map used in
this study and that of Gardiner et al. (2012) have two SSR
markers in common namely NZmsCN943067 and Hi05b09.
Interestingly, the results of both studies are in agreement,
that the LG7 QTL is in the region between both aforemen-
tioned SSR markers with NZmsCN943067 not showing any
significant correlation with the QTL in this study (Fig. 2)
and in Gardiner et al. (2012).

With respect to the‘O3’ X ‘RS’ population, strain speci-
ficity was also suggested by Fazio et al. (2008) since there
was a high overall level of infection in the population
after inoculation with E2002a (i.e. Ea3049) compared to
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Table 1 Most significant markers correlating with fire blight resistance following Kruskal-Wallis analysis for linkage groups 3 and 7 of Malus
Xrobusta 5. The analyses was performed using MapQTL software using the map data and phenotypic data of the progeny derived from M.9 X M.

Xrobusta 5 cross following inoculation with Ea222

Marker LG Position K-value PLLs of plants with
(M)
Sus-alleles Res-alleles
CHO03e03? LG3 1.11 40.0FHHH* 28.7 3.5
Fem18b* LG3 3.1 40.6%HHA* 353 0.9
SNP_ 49046 LG7  42.06 11.3%%* 24.2 4.7
SNP_ 49045 LG7 4227 12, 1%%* 24.2 4.2
SNP 39454 LG7  48.87 13.0%** 23.1 3.9
SNP_50982 LG7 5122 12.1%%* 22.1 4.3

K Value of Kruskal-Wallis analysis (significance levels: ¥*=0.05, ¥***=0.005, *****=0.0001); PLL percentage lesion length; sus-alleles (alleles

for susceptibility); Res-alleles (alleles for resistance)

# Fire blight resistance gene FB_MRS5 underlying the QTL of LG3 is located between these two markers

Fig.2 LOD score plot of interval LG7
mapping (IM) of the necrosis LOD
trait along LG7 of Mr5 following 43
genetic and phenotypic analyses 18
of the M9 X Mr5 F1 progeny.
The QTL interval is between the 14 —
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Ea273. A strain specific reaction in related apple rootstocks
was detected when four strains of E. amylovora (E4001a,
E2002a, E2017p and Ea273) were used to inoculate 24 apple
rootstocks (Fazio et al. 2006) also showing that E4001a and
E2002a, both S-allele strains (Vogt et al. 2013), as the most
aggressive strains. Similar field experiments on segregat-
ing populations and advanced apple rootstock selections
confirmed the nature of the strain by genotype interaction
derived from ‘R5’ (Fazio, unpublished data) and QTLs. Fur-
ther analysis of the same data reported in Gardiner et al.
(2012) using an enhanced map of the ‘O3’ X ‘R5’ popula-
tion with additional SNP markers from the 20 K Infinium®
SNP array (Illumina Inc.) (Bianco et al. 2014) confirmed the
LG3 and LG7 QTLs for Ea273, E4001a and E2002a strains.

@ Springer

We used an analysis of variance (Standard Least Squares
method using JMP Pro 16 software) that included CH03e03
(LG3) and SNP_FB 0716018 (LG7) and their interac-
tion to test the significance and independence of the loci
for all strains tested on the ‘O3’ X ‘R5’ progeny (Table 2).
The ANOVA revealed that both loci are highly significant.
However, their interaction was significant only for Ea273
and E4001a but not for E2002a. The interaction plots in
Fig. 3a-c showing the juxtaposition of each locus effect
against the other revealed that the LG3 d allele from Mr5
is providing resistance to the progeny and the homozygous
LG7 hh is providing resistance to the progeny. Both ‘O3’
and Mr5 are heterozygous at this locus; ‘O3’ is derived from
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Table 2 Summaries of inde-

) | o ANOVA Source DF Sum of Squares F Ratio  Prob>F
pendent analyses of variance X "
(ANOVA) for each strain tested Strain Ea273 CHO03e03 3 0.50811882 8.79 < 0.00(11
using the most significant SNP_FB_0716018 2 0.24875908 6.46 0.0021
markers from the ‘O3’ X ‘R5’ CHO03e03xSNP_FB_0716018 6 0.31190816 2.70 0.0163*
population analysis represent- Strain E2002a CHO03e03 3 1.2003852 4.62 0.0040%*
ing QTLs for linkage group 3 SNP_FB 0716018 2 2.0541843 11.8 <0.0001*
(CHO03e03) and linkage group 7 6 0.5711301 1.10 0.3645
(SNP_FB_0716018) and their . CHO03e03xSNP_FB_0716018 . . . .
interaction Strain E4001a CHO03e03 3 1.5674941 7.74 <0.0001
P
*Significance at <0.05 level; DF: SNP_FB 0716018 2 2.5206431 18.6 <0.0001
CHO03e03xXSNP_FB_0716018 6 1.5095337 3.72 0.0018*

degree of freedom

an interspecific cross between M.9 and a type of crabapple
that could be sharing similar alleles as Mr5.

This is the first report of the detection of Mr5 LG7 QTL
in an M.9 X Mr5 progeny, and with an E. amylovora strain
that expresses cysteine amino acid at position 156 of the
aviRpt2g, effector protein. Although an M.9 X ‘RS’ prog-
eny was initially investigated in New Zealand by artificial
inoculation and QTL mapping analyses, only the LG3 QTL
was detected (Gardiner et al. 2012) as was also the case with
an ‘Idared’x Mr5 progeny (Gardiner et al. 2012; Peil et al.
2007). Gardiner et al. (2012) applied six LG3 SSR markers
to ascertain the identity of the three different M. Xrobusta 5
accessions, and reported that the US accession differed from
the German and New Zealand accessions in alleles of one
SSR marker suggesting a different clonal variant. However,
twelve SSRs across eleven linkage groups applied by Woh-
ner et al. (2014b) showed the German and US accessions to
have the same fingerprints, therefore, the genetic identity of
both accessions have to be examined in more detail. Never-
theless, the Mr5 from the Germany germplasm used in the
current study is the same as previously reported (Peil et al.
2007; Gardiner et al. 2012; Wohner et al. 2014a). Moreover,
with the same ‘Idared’x Mr5 progeny established in Ger-
many, it was shown that the QTLs of Mr5 were dependent
on the single nucleotide polymorphism in the avrRpt2g,
effector protein (Vogt et al. 2013) because with this popula-
tion, the LG3 QTL could be detected with strains carrying
the C-allele of avrRpt2;, and not with the S-allele strains
(Peil et al. 2007; Wohner et al. 2014a), whereas the LG7
QTL could be detected with strains carrying the S-allele
of aviRpt2g, and not with the C-allele strains (Peil et al.
2011; Wohner et al. 2014a). Thus, this is the first time the
LG7 QTL is detected in a genetic map of the German Mr5
with a C-allele strain. Nevertheless, the results obtained
from inoculation of the M.9 X Mr5 population differed sub-
stantially from the results obtained from the ‘Idared’ X Mr5
population (Peil et al. 2007) with the same E. amylovora
strain: the mean PLL was around 35%, which is around 20%

higher than in M.9 X Mr5, and the artificial inoculation in
the greenhouse was performed on grafted scions instead
of replicates on their own roots. The observed differences
could be due to a lower virulence of the strain, even after
passage and re-isolation through a plant, the phenotyping
of only 60% of the progeny, any genetic influence of M.9
or the inoculation of plants on their own roots. Evidence for
the reliability of the QTL on LG7 after phenotyping with a
C-allele strain is the resulting data from ‘O3’ x ‘R5’ popula-
tion. Furthermore, a reason for the failure to detect the QTL
on LG7 in the ‘Idared’ X Mr5 population could be the lack
of the corresponding allele in ‘Idared’ to get homozygosity
on that locus. This is because in the ‘O3’ X ‘R5’ population,
the homozygous LG7 hh allele is providing resistance to the
progeny. M.9 is in the pedigree of ‘O3’ and could contribute
to the homozygosity in the M.9 X Mr5 progeny and there-
fore, conferring resistance to C-allele strains, whereas the
effect of the heterozygous LG7 QTL is masked by the strong
effect of the LG3 QTL and the significance of the Mr5 LG7
alleles seems to intensify with the virulence of the strain.

Taken together, the crabapple Malus Xrobusta 5, which
has a strong fire blight resistance QTL on LG3, has another
fire blight resistance QTL on LG7. This LG7 QTL is inde-
pendent of the QTL on LG3 and is not affected by the
aviRpt2p, 156 S/C amino acid switch.
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Fig. 3 Interaction plots of LG3 a
and LG7 loci for strains Ea273 08
(a), E2002a (b) and E4001a (c).
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