Virus Studies in the Geneva® Apple Rootstock Breeding

Program

Gennaro Fazio¹, Jean Carlos Bettoni², Larissa Carvalho Costa³, Oscar P. Hurtado-Gonzales³, Maher Al Rwahnih⁴, Abraham Steinberger¹, Abby Nedrow¹, Gayle M. Volk⁵, Stuart Adams⁶, Richard Adams⁶, Terence Robinson⁷

¹USDA-ARS Plant Genetic Resources Unit, 630 W. North Street., Geneva, NY 14456, USA; Gen-naro.Fazio@usda.gov; akn6@cornell.edu | ²The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4410, New Zealand; Jean.Bettoni@plantandfood.co.nz | ³USDA-APHIS Plant Germplasm Quarantine Program, 9901 Powder Mill Road, Bldg 580, BARC-East, Beltsville, MD 20705, USA; larissa.carvalhocosta@usda.gov oscar.hurtado-gonzales@usda.gov | ⁴Department of Plant Pathology, University of California-Davis, Davis, CA 95616, USA; mal-rwahnih@ucdavis.edu | ⁵USDA-ARS National Laboratory for Genetic Resources Preservation, 11115. Mason Street, Fort Collins, CO 80521, USA; Gayle.Volk@usda.gov | ⁶Willow Drive Nursery, Ephrata, WA, USA; stuart@willowdrive.com | ⁷Sect. of Horticulture, School of Integrative Plant Sciences, AgriTech, Cornell University, Geneva, NY, USA; tlr1@cornell.edu

Keywords: Virus, cryotherapy, heat therapy,

iruses that infect apple trees cause losses in apple production mostly due to tree decline and death, graft union incompatibility, decreased tree growth, deformation of branches and roots, and by making fruit unmarketable (Campbell, 1981; Sampson and Johnstone, 1974). Thanks to recent advances of DNA and RNA high throughput sequencing technologies, a number of viruses and viroids have been discovered in apple tissues and apple orchard related material (Liu et al., 2021; Umer et al., 2019; Wright et al., 2020). However, only a few of these have been directly implicated with adverse symptomatology including the latent viruses Apple chlorotic leaf spot virus (ACLSV, Trichovirus), Apple stem grooving virus (ASGV, Capillovirus), Apple stem pitting virus (ASPV, Foveavirus), Tomato ring spot virus (ToRSV, Nepovirus), Tobacco ring spot virus (TRSV, Nepovirus), and Apple mosaic virus (ApMV, Ilarvirus) (Hu et al., 2019; Keshavarz and Hajnajari, 2019; Koike et al., 1993; Lana et al., 1983; Li et al., 2020; Stouffer et al., 1977; Xing et al., 2018). Other viruses and viroids like Apple hammerhead viroid (AHVd, Pelamoviroid) and Citrus concave gum virus (CCGaV, Coguvirus) (Liu et al., 2021; Serra et al., 2018; Wright et al., 2018) have only suspected associations with symptoms that include trunk splitting, mosaic, necrosis, shoot decline, and dieback (Lim et al., 2019; Messmer et al., 2017; Nabi and Baranwal, 2020; Sanderson and James, 2019; Szostek et al., 2018; Wright et al., 2020). Because these viruses are often found in conjunction (mixed infections) with other apple viruses, more research is needed to assess the influence of each when it is the only virus present in an apple tree.

Our understanding to date is that most viruses are spread by grafting, where infected clonal rootstocks or scions are the media for transmission from one tree to another (Barba et al., 2015; Li et al., 2020; Rubio et al., 2020; Wood, 2000); however, a recent report suggests the possibility of pollen transmission of ASGV (Isogai et al., 2022). While the goal of most apple industries throughout the world has been to work only with material that has been certified tested free of viruses, phytoplasmas and other adverse graft-transmissible agents, the eradication of these agents has been elusive due to propagation practices of some nurseries, growers and homeowners that use infected sources of budwood (Fuchs, 2016; Fuchs et al., 2018). Millions of trees propagated prior to the discovery of viruses affecting apple trees, the transport of these trees across continents,

Some Geneva® rootstocks (G.814 and G.16) have displayed hypersensitivity to viruses while others (G.935 or G.969) have displayed poor growth or slow decline with certain virus-laden scion cultivars. Other Geneva® rootstocks (G.41, G.202, G.222, G.214, and G.890) have not displayed sensitivity to viruses. The Geneva apple rootstock breeding program is committed to providing virus free plant material to rootstock producers worldwide. To do that we have combined heat therapy with cryotherapy to eradicate even one of the most recalcitrant viruses.

and propagation on common virus

infected apple rootstocks like M.9, M.7, MM.111, B.118, M.8 etc. have all contributed to the historical spread of these viruses and viroids around the world. Nurseries in the Netherlands may have been some of the first to adopt virus elimination as a practice after several experiments demonstrated the adverse nature of viruses in apple rootstocks (Baumann and Louis, 1980; Oosten, 1975a, b, c, 1979; Robitaille and Carlson, 1973). To complicate things, as we have been reminded lately with the COVID 19 pandemic, viruses, including the ones that affect apple trees, mutate and may form many strains within a certain type. Some of these strains may be more or less virulent depending on the individual type of apple (or apple rootstock) being exposed (Howell et al., 1996). Some wild species of apple seem to react severely to the presence of viruses (Kirby et al., 2001; Silva et al., 2008), hence they have been used as live indicators (biological indexing) for the presence of viruses in budwood. In apple rootstocks, some of these wild species have been the source of positive traits like resistance to fire blight (Malus robusta, M. floribunda) and cold tolerance (M. baccata) (Gardner et al., 1980; Warner et al., 1984). One of the best apple rootstocks to survive extreme cold events 'Ottawa 3' displays susceptibility to at least ASGV (James et al., 1997). Several apple rootstocks released by the Geneva® breeding program (G.935, G.214, G.890, G.969, G.814) are derived from parents 'Ottawa 3' and 'Robusta 5' and

Figure 1. G.935 apple rootstock grafted with a virus laden strain of 'Honeycrisp' (left) and a virus cleaned version of the same strain (right) planted in Ephrata, WA (Willow Drive Nursery).

display differential sensitivity to apple viruses — G.814 gives significant early signs of sensitivity to ASGV, while others, like G.935 and G.969, have displayed sensitivity to a combination of strains of latent viruses (possibly ASGV, ASPV, and ACLSV). This sensitivity was only discovered when rare scions possessing all virulent virus strains were used for graftwood (Figure 1). Apple rootstock G.16 (progeny of M. floribunda and 'Ottawa 3') shows combined virus sensitivity likely derived from both parents and is hypersensitive to latent viruses, causing nursery trees to decline and die within 2 years of grafting with virus-infected wood (Figure 2). In some cases, the demise of apple trees due to the presence of

Figure 2. Comparison of viruspositive (left) and virus-negative (right) 'McIntosh' grafted on G.16 rootstock in 2003.

viruses can be slow and display a gradual decline caused by graft union necrosis among certain rootstock/scion combinations in the presence of ToRSV (Tuttle and Gotlieb, 1985), as observed in MM.106 rootstock grafted with 'Delicious' scion. The bottom line is that viruses and sensitivity to viruses are detrimental and should be avoidable by the implementation of elimination practices and perhaps the discovery and selection against the genes that cause hypersensitivity in apples.

Virus research in the Geneva® apple rootstock breeding program has taken many forms throughout the years including nursery trials in 2003 comparing G.16 and other advanced apple rootstocks grafted with the same scion cultivar infected with viruses or cleaned (Figure 2), the testing of 50 rootstocks in the Hudson Valley Lab and at Virginia Tech planted in 2012 to identify sensitivity to ToRSV, and other field trials throughout the U.S. that featured scion-wood loaded with diverse virus types. More recently, incidents of decline of G.935 rootstock when grafted with certain strains of 'Delicious' and 'Honeycrisp' cultivars urged the need to develop experiments that would reveal the viral causes of this decline and their genetic components in apple rootstocks in order to identify other rootstocks in the breeding program which may suffer similar problems. Furthermore, as the breeding program releases additional rootstocks for industry use, it needs to make sure that the material distributed is free of viral agents that may compromise the industry, therefore experiments aimed at the detection and elimination of apple viruses have been conducted. In this article we describe some of these experiments and the results obtained so far.

Breeding Program Testing for the Presence of Viruses and Viroids in Elite Breeding Lines

The process of breeding apple rootstocks includes the maintenance of thousands of individual breeding lines and the evaluation of thousands of apple trees grafted with different scion varieties. While the program has the goal to keep the original seedling trees alive and well and maintain their "seedling-virus-free" status, at times these seedlings were lost and we had to rescue the rootstocks from finished trees for which the virus status was unknown. Hence there was a need to conduct a virus census of all the elite breeding lines

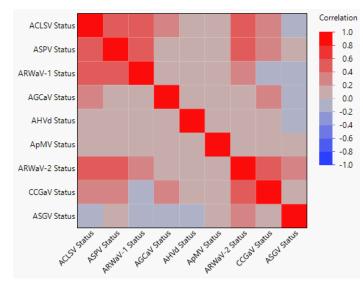


Figure 3. Clustered correlation coefficients showing the co-presence of viruses in breeding lines of the Geneva® apple rootstock breeding program.

being propagated in the program to identify the ones that needed to be cleaned up. Iterations of this census were attempted at different times in the history of the program, however, in 2021, thanks to a cooperation between USDA-APHIS Plant Germplasm Quarantine Program's (PGQP) and the Geneva breeding program and under the leadership of Abe Steinberger (currently a PhD student at the University of Minnesota) the program was able to utilize testing protocols established at APHIS PGPQ to identify apple rootstock breeding lines that had been compromised by viruses and viroids. Having established in-house RT-PCR and qRT-PCR testing methods for eight apple viruses and one viroid [ACLSV, Apple green crinkle associated virus (AGCaV), AHVd, ApMV, Apple rubbery woodassociated virus type 1 (ARWaV-1), Apple rubbery wood-associated virus type 2 (ARWaV-2), ASGV, ASPV, and CCGaV] the census found that out of 1,395 tests only 186 were positive. Most times, the same rootstock was infected by more than one virus (mixed infections). Analysis of the co-presence of viruses in these rootstocks with mixed infections (Figure 3) revealed that ACLSV, ASPV, ARWaV-1, ARWaV-2, and CCGaV were often found together, whereas ASGV was not associated with these except for ARWaV-2. We are utilizing this information to target elite apple rootstock lines for eradication.

Cryotherapy and Thermotherapy Experiments to Eradicate ASGV, ACLSV and AHVd from Elite Rootstock Breeding Lines

The Geneva breeding program has adopted a procedure to establish "clean" propagation material at key centers and micropropagation laboratories prior to release of elite breeding lines into the commercial stream as rootstock cultivars. While preparing to release a set of new apple rootstocks for the U.S. industry, the program collaborated with Foundation Plant Services in Davis, CA and APHIS PGQP in Beltsville, MD to index plant material with what is known as High Throughput Sequencing (HTS) or Deep Sequencing, which is a powerful technology that allow the detection of known viruses that also include variants that might escape regular RT-PCR testing, including novel viruses. This procedure found that some of the stocks were infected by viruses. At the same time, Dr. Bettoni and Dr. Volk at USDA ARS National Laboratory for Genetic Resources Preservation (NLGRP), were working on discovering new ways to eradicate viruses from apple germplasm destined for

cryopreservation. As a result, a collaboration ensued between the Geneva breeding program and NLGRP to investigate whether thermotherapy or cryotherapy alone or in combination could effectively eradicate ACLSV, ASGV and AHVd from in vitro cultures of four apple rootstocks developed in the Cornell-Geneva apple rootstock breeding program (CG.2034, CG.4213, CG.5257, and CG.6006) (Figure 4). For thermotherapy treatments, in vitro plants were treated for four weeks at 36°C (day) and 32°C (night). Plant vitrification solution 2 (PVS2) and cryotherapy treatments included a shoot tip preculture in 2 M glycerol + 0.8 M sucrose for 1 day and then exposure to PVS2 for 60 or 75 min at 22°C, either without or with liquid nitrogen (LN, cryotherapy) exposure. Combinations of thermotherapy and PVS2/cryotherapy treatments were also performed. Shoot tips were then warmed, recovered on growth medium, transferred to the greenhouse, grown, placed in dormancy inducing conditions, and then grown again prior to sampling leaves for the presence of viruses and viroids. Overall, thermotherapy combined with cryotherapy treatments resulted in the highest percentage of virusand viroid-free plants. The work

was published in the journal *Plants* in early 2022 (Bettoni et al., 2022). Although the efficacy of the combination of thermotherapy with cryotherapy has been reported for eradication of some apple viruses, to the best of our knowledge, this is the first study reporting success in eradicating of AHVd from infected *in vitro*-cultured apple rootstock plants. This combination of procedures has great potential for producing virus and viroid-free planting materials for the apple industry. Furthermore, it could also be a valuable tool to support the global exchange of apple germplasm. We are in the process of replicating the eradication procedure in Geneva, NY with some promising results.

Investigation on the Genetics of Sensitivity to Viruses in the Geneva Apple Rootstock Breeding Program

As a result of the issues discovered with the rootstock 'G.935' when grafted with certain strains of 'Honeycrisp' and 'Red Delicious' that had been found to contain a somewhat rare mixture of viruses and viroids (Wright et al., 2020), the Geneva apple rootstock breeding program initiated a collaboration with Willow Drive Nursery to test how widespread the sensitivity was within some of the elite germplasm of the breeding program and to utilize some

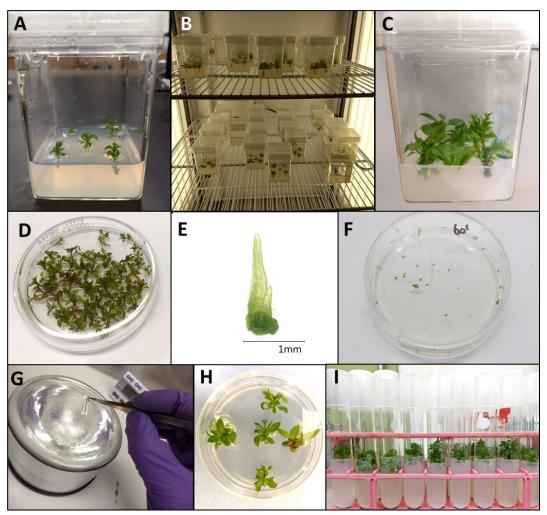


Figure 4. In *vitro* infected *Malus* plants undergoing therapy treatments; A) CG 5257 prior to thermotherapy exposure; B) plants during thermotherapy treatment; C) CG 5257 after 4 weeks of thermotherapy; D) CG 6006 prior to shoot tip excision; E) 1 mm shoot tip excised from CG 5257; F) shoot tips incubated on plant vitrification solution 2 (PVS2); G) PVS2-treated shoot tips placed onto a thin layer of PVS2 on sterile aluminum foil strips and then plunged into liquid nitrogen; H) CG 5257 exhibiting regrowth after eight weeks; and I) treated in *vitro* plants prior to shipment to Geneva, New York for greenhouse plant establishment.

of the breeding populations to determine the genetics of sensitivity. Willow Drive Nursery had obtained virus-free and virus-laden material from the same 'Honeycrisp' strain that was associated with the slow decline experienced with 'G.935' (Figure 1) and grafted that material on a set of 12 rootstocks that represented some of the elite material available at that time (2017). Overall, the preliminary trial revealed that the presence of the virus cocktail inhibited growth on most rootstocks; however, some were more affected than others (Figure 5). In 2020, these preliminary results led to the preparation and planting of a larger replicated experiment featuring 165 different rootstock breeding lines grafted with both virus free and virus laden scions of the same 'Honeycrisp' strain. The experiment is in progress and has already produced some preliminary growth data that will be used to discover genetic links to virus sensitivity. These links will enable the breeding program to preselect material that is not hypersensitive to viruses and perhaps discover the genes underlying such hypersensitivity in the Geneva apple rootstock breeding program. Root systems of G.935 and G.969 are obviously being compromised by viruses, and in an effort to understand the mechanism by which root growth is being inhibited by viruses we have initiated another experiment (Figure 6) using aeroponics to test if root growth is being repressed by viruses and featuring

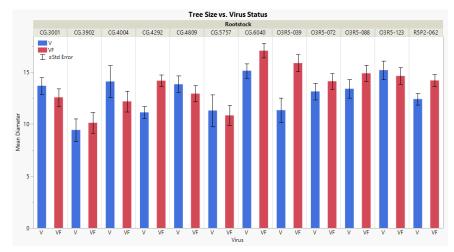


Figure 5. Preliminary results showing the comparative tree growth (mm diameter) of experimental apple rootstocks grafted with virus-laden (V) and virus-free (VF) versions of a 'Honeycrisp' strain. Mention age of tree?

Figure 6. Several apple rootstocks including G.890, G.935, and G.969 grafted with virusladen (green tags) and virus-free (white tags) versions of a 'Honeycrisp' strain being grown in aeroponics to test if root growth is being repressed by viruses.

Figure 7. Apple trees grown in aeroponics to gain easy access to roots during experiments.

several rootstocks including G.890 (symptomless), G.935, and G.969 grafted with virus-laden (V) and virus-free (VF) versions of a 'Honeycrisp' strain. The aeroponic system allows easy access to roots (Figure 7) for studying gene expression and measuring growth.

Conclusions

Viruses are detrimental for apple production and the nursery industry; therefore, they should be avoided whenever possible. Geneva® rootstocks G.41, G.202, G.222, G.214, and G.890 have not displayed the hypersensitivity of G.814 and G.16 or the slow decline that G.935 or G.969 experiences with certain virus-laden scion cultivars. Recent experiences with G.969 grafted with virusladen 'Granny Smith' have shown that G.969 seems to have similar sensitivity as G.935 to one or a combination of latent viruses. Interestingly, in a current field trial with virus-laden 'Granny Smith' which includes G.969 and G.814, only G.969 is struggling, whereas G.814 seems to be growing well, perhaps indicating some genetic specificity to the viral factors in this strain of 'Granny Smith'. The discovery that heat therapy combined with cryotherapy is able to eradicate even one of the most recalcitrant viruses is a big step toward the eradication of viruses from the breeding program. The Geneva rootstock breeding program is committed to understanding the genetic basis of this phenomenon and to providing virus free or 'cleaned' material to the industry.

Literature Cited

Barba, M., Ilardi, V., and Pasquini, G. 2015. Control of pome and stone fruit virus diseases. In "Advances in Virus Research, Vol 91: Control of Plant Virus

Diseases Vegetatively-Propagated Crops" (G. Loebenstein and N. I. Katis, eds.), Vol. 91, pp. 47-83. Elsevier Academic Press Inc, San Diego.

Baumann, G., and Louis, F. 1980. Investigations on virus-free and virus tested M.9 clones. Obstbau 5:9-12.

Bettoni, J. C., Fazio, G., Costa, L. C., Hurtado-Gonzales, O. P. P., Al Rwahnih, M., Nedrow, A., and Volk, G. M. M. 2022. Thermotherapy followed by shoot tip cryotherapy eradicates latent viruses and apple hammerhead viroid from in vitro apple rootstocks. Plants 11:582.

Campbell, A. I. 1981. The effects of viruses on the growth, yield and quality of three apple cultivars on healthy and infected clones of four rootstocks. Acta Horticulturae 114:185-191.

Fuchs, M. 2016. Virus transmission and grafting practices. New York Fruit Quarterly 24, 25-27.

Fuchs, M., Kahke, C., Donahue, D., Wallis, A., and Basedow, M. 2018. Distribution of viruses in New York apple orchards. Fruit Quarterly 26:5-9.

Gardner, R. G., Cummins, J. N., and Aldwinckle, H. S. 1980. Inheritance of fire blight resistance in Malus in relation to rootstock breeding. Journal of the American Society for Horticultural Science 105:912-916.

Howell, W. E., Mink, G. I., Hurtt, S. S., Fuster, J. A., and Postman, J. D. 1996. Select Malus clones for rapid detection of apple stem grooving virus. Plant Disease 80:1200-1202.

Hu, G. J., Dong, Y. F., Zhang, Z. P., Fan, X. D., and Ren, F. 2019. Elimination of apple necrosis mosaic virus from potted apple plants by thermotherapy combined with shoot-tip grafting. Scientia Horticulturae 252:310-315.

Isogai, M., Shimoda, R., Nishimura, H., and Yaegashi, H. 2022. Pollen grains infected with apple stem grooving virus serve as a vector for horizontal transmission of the virus. Journal of General Plant Pathology 88:81-87.

James, P., Barritt, B. H., and Kappel, F. 1997. Performance of 3 apple cultivars on 6 rootstocks during the first 6 seasons, at Lenswood, South Australia. Acta Horticulturae 451:163-169.

Keshavarz, T., and Hajnajari, H. 2019. Status of the Apple chlorotic leaf spot virus infection in native and imported apple tree cultivars in the national collection of Kamalshahr horticulture. Journal of Plant Protection (Mashhad) 33:387-396.

Kirby, M. J., Guise, C. M., and Adams, A. N. 2001. Comparison of bioassays and laboratory assays for apple stem grooving virus. Journal of Virological

- Methods 93:167-173.
- Koike, H., Makita, H., and Tsukahara, K. 1993. Effect of an Apple-Chlorotic-Leaf-Spot-Virus free M.9 rootstock on the growth of apple-trees. Journal of the Japanese Society for Horticultural Science 62:499-504.
- Lana, A. F., Peterson, J. F., Rouselle, G. L., and Vrain, T. C. 1983. Association of tobacco ringspot virus with a union incompatibility of apple. Phytopathologische Zeitschrift 106:141-148.
- Li, C. J., Yaegashi, H., Kishigami, R., Kawakubo, A., Yamagishi, N., Ito, T., and Yoshikawa, N. 2020. Apple russet ring and Apple Green Crinkle Diseases: Fulfillment of Koch's postulates by virome analysis, amplification of full-length cDNA of viral genomes in vitro transcription of infectious viral RNAs, and reproduction of symptoms on fruits of apple trees inoculated with viral RNAs. Frontiers in Microbiology 11:15.
- Lim, S., Moon, J. S., Cho, I. S., Kim, H. R., and Lee, S. H. 2019. First report of Apple Hammerhead Viroid infecting apple trees in South Korea. Plant Disease 103:2700-2700.
- Liu, Z., Dong, Z. F., Zhan, B. H., and Li, S. F. 2021. Characterization of an Isolate of Citrus Concave Gum-Associated Virus from apples in China and development of an RT-RPA assay for the rapid detection of the virus. Plants-Basel 10:11.
- Messmer, A., Sanderson, D., Braun, G., Serra, P., Flores, R., and James, D. 2017. Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from 'Pacific Gala' apple (Malus domestica) in Canada. Canadian Journal of Plant Pathology 39:342-353.
- Nabi, S. U., and Baranwal, V. K. 2020. First report of Apple Hammerhead Viroid infecting apple cultivars in India. Plant Disease 104:3086-3087.
- Oosten, H. J. v. 1975a. Experiences in the Netherlands with virus-free apple trees. I. Golden Delicious on M.9 and M.26. Fruitteelt 65:436-438.
- Oosten, H. J. v. 1975b. Experiences in the Netherlands with virus-free apple trees. II. Cox's Orange Pippin and Red Boskoop on M.9. Fruitteelt 65:466-468.
- Oosten, H. J. v. 1975c. Experiences in the Netherlands with virus-free apple trees. III. Conclusions and observations on the effects on growth. Fruit-teelt 65:499-501.
- Oosten, H. J. v. 1979. Virus-free planting material: a balance. Fruitteelt 69:154-158. Robitaille, H. A., and Carlson, R. F. 1973. Growth and compatibility characteristics of crabapple/rootstock combinations. Fruit Varieties Journal 27:74-76.
- Rubio, L., Galipienso, L., and Ferriol, I. 2020. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Frontiers in Plant Science 11:23.
- Sampson, P. J., and Johnstone, G. R. 1974. Effect of rootstock, scion variety and virus complement on fruit production and growth of young apple trees. Journal of Horticultural Science 49:183-187.
- Sanderson, D., and James, D. 2019. Analysis of the genetic diversity of genome sequences of variants of apple hammerhead viroid. Canadian Journal of Plant Pathology 41:551-559.
- Serra, P., Messmer, A., Sanderson, D., James, D., and Flores, R. 2018. Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research 249:8-15.
- Silva, F. N., Nickel, O., Fajardo, T. V. M., and Bogo, A. 2008. Biological multiple indexing and RT-PCR detection of latent viruses in apple plants. Tropical Plant Pathology 33:157-161.
- Stouffer, R. F., Hickey, K. D., and Welsh, M. F. 1977. Apple union necrosis and decline. Plant Disease Reporter 61:20-24.
- Szostek, S. A., Wright, A. A., and Harper, S. J. 2018. First report of Apple Hammerhead Viroid in the United States, Japan, Italy, Spain, and New Zealand. Plant Disease 102:2670-2670.
- Tuttle, M. A., and Gotlieb, A. R. 1985. Graft union histology and distribution of tomato ringspot virus in infected McIntosh/Malling Merton 106 apple trees. Phytopathology 75:347-351.
- Umer, M., Liu, J. W., You, H. F., Xu, C., Dong, K. L., Luo, N., Kong, L. H., Li, X. P., Hong, N., Wang, G. P., Fan, X. D., Kotta-Loizou, I., and Xu, W. 2019. Genomic, morphological and biological traits of the viruses infecting major fruit trees. Viruses-Basel 11:12.
- Warner, J., Heeney, H. B., Leuty, S. J., and Potter, C. L. 1984. Effect of virus infection on the performance of McIntosh apple trees on selected seedling and clonal rootstocks. Canadian Journal of Plant Science 64:361-368.
- Wood, G. A. 2000. Determining whether natural spread of apple green crinkle disease occurs, its absence from New Zealand clonal apple rootstocks, and the sensitivity of some new cultivars. New Zealand Journal of Crop and Horticultural Science 28:245-253.
- Wright, A. A., Cross, A. R., and Harper, S. J. 2020. A bushel of viruses: Identification of seventeen novel putative viruses by RNA-seq in six apple trees. PLoS One 15, e0227669.
- Wright, A. A., Szostek, S. A., Beaver-Kanuya, E., and Harper, S. J. 2018. Diversity of three bunya-like viruses infecting apple. Archives of Virology 163:3339-3343.
- Xing, F., Robe, B. L., Zhang, Z. X., Wang, H. Q., and Li, S. F. 2018. Genomic analysis, sequence diversity, and occurrence of Apple Necrotic Mosaic Virus, a novel Ilarvirus associated with Mosaic Disease of apple trees in China. Plant Disease 102:1841-1847.

Gennaro Fazio is a research scientist with the USDA-ARS who leads the Geneva apple rootstock breeding program, **Jean Carlos Bettoni** was a research scientist at the USDA-ARS National Laboratory for Genetic Resources Preservation in Fort Collins CO but is now a researcher at the New Zealand Institute for Plant and Food Research Limited in Palmerston North, Larissa Carvalho Costa is a technician at USDA-APHIS Plant Germplasm Quarantine Program in Beltsville, MD who works with Oscar P. Hurtado-Gonzales who is a research scientist in charge of the plant quarantine station, Maher Al Rwahnih is a researcher in Plant Pathology at the Univ. of Calif. at Davis, Abraham Steinberger and Abby Nedrow are research technicians who work with Gennaro Fazio in the Geneva rootstock breeding program, Gayle M. Volk is a research scientist at the USDA-ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, Stuart Adams and Richard Adams are owners of Willow Drive Nursery in Ephrata WA, Terence **Robinson** is a research and extension professor at Cornell University who is the co-leader of the Geneva apple rootstock breeding program.

Don't wait to order your trees, Call Stan today!

INVENTORY REMAINS LIMITED ... ORDER NOW FOR 2021, 2022 AND BEYOND

Representing the nation's premier fruit tree nurseries to serve you, the grower, with the best.

Put Stan's years as a grower and fruit marketer to your advantage, services are FREE.

STAN PETERSON FRUIT TREE SALES

1-888-333-1464 | www.fruit-treesales.com C: 231-499-9292 | F: 231-843-4113 fruit-treesales@outlook.com