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and propagation 
on common virus 
infected apple rootstocks like M.9, M.7, MM.111, B.118, M.8 etc. 
have all contributed to the historical spread of these viruses and 
viroids around the world.  Nurseries in the Netherlands may have 
been some of the first to adopt virus elimination as a practice after 
several experiments demonstrated the adverse nature of viruses in 
apple rootstocks (Baumann and Louis, 1980; Oosten, 1975a, b, c, 
1979; Robitaille and Carlson, 1973). To complicate things, as we 
have been reminded lately with the COVID 19 pandemic, viruses, 
including the ones that affect apple trees, mutate and may form 
many strains within a certain type.  Some of these strains may be 
more or less virulent depending on the individual type of apple (or 
apple rootstock) being exposed (Howell et al., 1996). Some wild 
species of apple seem to react severely to the presence of viruses 
(Kirby et al., 2001; Silva et al., 2008), hence they have been used 
as live indicators (biological indexing) for the presence of viruses 
in budwood.  In apple rootstocks, some of these wild species have 
been the source of positive traits like resistance to fire blight (Malus 
robusta, M. floribunda) and cold tolerance (M. baccata) (Gardner et 
al., 1980; Warner et al., 1984).  One of the best apple rootstocks to 
survive extreme cold events ‘Ottawa 3’ displays susceptibility to at 
least ASGV (James et al., 1997).  Several apple rootstocks released 
by the Geneva® breeding program (G.935, G.214, G.890, G.969, 
G.814) are derived from parents ‘Ottawa 3’ and ‘Robusta 5’ and 
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Some Geneva® rootstocks (G.814 and G.16) 
have displayed hypersensitivity to viruses 
while others (G.935 or G.969) have displayed 
poor growth or slow decline with certain 
virus-laden scion cultivars. Other Geneva® 
rootstocks (G.41, G.202, G.222, G.214, and 
G.890) have not displayed sensitivity to 
viruses.  The Geneva apple rootstock breeding 
program is committed to providing virus 
free plant material to rootstock producers 
worldwide.  To do that we have combined 
heat therapy with cryotherapy to eradicate 
even one of the most recalcitrant viruses.

Viruses that infect apple trees cause losses in apple pro-
duction mostly due to tree decline and death, graft union 
incompatibility, decreased tree growth, deformation of 

branches and roots, and by making fruit unmarketable (Campbell, 
1981; Sampson and Johnstone, 1974).  Thanks to recent advances 
of DNA and RNA high throughput sequencing technologies, a 
number of viruses and viroids have been discovered in apple tis-
sues and apple orchard related material (Liu et al., 2021; Umer et 
al., 2019; Wright et al., 2020). However, only a few of these have 
been directly implicated with adverse symptomatology including 
the latent viruses Apple chlorotic leaf spot virus (ACLSV, Tricho-
virus), Apple stem grooving virus (ASGV, Capillovirus), Apple 
stem pitting virus (ASPV, Foveavirus), Tomato ring spot virus 
(ToRSV, Nepovirus), Tobacco ring spot virus (TRSV, Nepovirus), 
and Apple mosaic virus (ApMV, Ilarvirus) (Hu et al., 2019; Kes-
havarz and Hajnajari, 2019; Koike et al., 1993; Lana et al., 1983; Li 
et al., 2020; Stouffer et al., 1977; Xing et al., 2018). Other viruses 
and viroids like Apple hammerhead viroid (AHVd, Pelamoviroid) 
and Citrus concave gum virus (CCGaV, Coguvirus) (Liu et al., 
2021; Serra et al., 2018; Wright et al., 2018) have only suspected 
associations with symptoms that include trunk splitting, mosaic, 
necrosis, shoot decline, and dieback (Lim et al., 2019; Messmer et 
al., 2017; Nabi and Baranwal, 2020; Sanderson and James, 2019; 
Szostek et al., 2018; Wright et al., 2020). Because these viruses are 
often found in conjunction (mixed infections) with other apple 
viruses, more research is needed to assess the influence of each 
when it is the only virus present in an apple tree.
	 Our understanding to date is that most viruses are spread by 
grafting, where infected clonal rootstocks or scions are the media 
for transmission from one tree to another (Barba et al., 2015; Li et 
al., 2020; Rubio et al., 2020; Wood, 2000); however, a recent report 
suggests the possibility of pollen transmission of ASGV (Isogai et 
al., 2022). While the goal of most apple industries throughout the 
world has been to work only with material that has been certified 
tested free of viruses, phytoplasmas and other adverse graft-trans-
missible agents, the eradication of these agents has been elusive due 
to propagation practices of some nurseries, growers and homeown-
ers that use infected sources of budwood (Fuchs, 2016; Fuchs et al., 
2018). Millions of trees propagated prior to the discovery of viruses 
affecting apple trees, the transport of these trees across continents, 

 
Figure 1.  G.935 apple rootstock grafted with a virus laden strain of ‘Honeycrisp’ (left) and a 
virus cleaned version of the same strain (right) planted in Ephrata, WA (Willow Drive Nursery). 
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display differential sensitivity 
to apple viruses — G.814 gives 
significant early signs of sensitiv-
ity to ASGV, while others, like 
G.935 and G.969, have displayed 
sensitivity to a combination of 
strains of latent viruses (possibly 
ASGV, ASPV, and ACLSV). This 
sensitivity was only discovered 
when rare scions possessing all 
virulent virus strains were used 
for graftwood (Figure 1).  Apple 
rootstock G.16 (progeny of M. 
floribunda and ‘Ottawa 3’) shows 
combined virus sensitivity likely 
derived from both parents and is 
hypersensitive to latent viruses, 
causing nursery trees to decline 
and die within 2 years of grafting 
with virus-infected wood (Figure 
2).  In some cases, the demise of 
apple trees due to the presence of 
viruses can be slow and display a gradual decline caused by graft 
union necrosis among certain rootstock/scion combinations in 
the presence of ToRSV (Tuttle and Gotlieb, 1985), as observed in 
MM.106 rootstock grafted with ‘Delicious’ scion.  The bottom line 
is that viruses and sensitivity to viruses are detrimental and should 
be avoidable by the implementation of elimination practices and 
perhaps the discovery and selection against the genes that cause 
hypersensitivity in apples.
	 Virus research in the Geneva® apple rootstock breeding pro-
gram has taken many forms throughout the years including nursery 
trials in 2003 comparing G.16 and other advanced apple rootstocks 
grafted with the same scion cultivar infected with viruses or cleaned 
(Figure 2), the testing of 50 rootstocks in the Hudson Valley Lab and 
at Virginia Tech planted in 2012 to identify sensitivity to ToRSV, 
and other field trials throughout the U.S. that featured scion-wood 
loaded with diverse virus types.  More recently, incidents of decline 
of G.935 rootstock when grafted with certain strains of ‘Delicious’ 
and ‘Honeycrisp’ cultivars urged the need to develop experiments 
that would reveal the viral causes of this decline and their genetic 
components in apple rootstocks in order to identify other rootstocks 
in the breeding program which may suffer similar problems.  Fur-
thermore, as the breeding program releases additional rootstocks 
for industry use, it needs to make sure that the material distributed 
is free of viral agents that may compromise the industry, therefore 
experiments aimed at the detection and elimination of apple viruses 
have been conducted.  In this article we describe some of these 
experiments and the results obtained so far.

Breeding Program Testing for the Presence of Viruses and 
Viroids in Elite Breeding Lines
	 The process of breeding apple rootstocks includes the mainte-
nance of thousands of individual breeding lines and the evaluation of 
thousands of apple trees grafted with different scion varieties.  While 
the program has the goal to keep the original seedling trees alive 
and well and maintain their “seedling-virus-free” status, at times 
these seedlings were lost and we had to rescue the rootstocks from 
finished trees for which the virus status was unknown. Hence there 
was a need to conduct a virus census of all the elite breeding lines 

being propagated in the program to identify the ones that needed to 
be cleaned up.  Iterations of this census were attempted at different 
times in the history of the program, however, in 2021, thanks to a 
cooperation between USDA-APHIS Plant Germplasm Quarantine 
Program’s (PGQP) and the Geneva breeding program and under 
the leadership of Abe Steinberger (currently a PhD student at the 
University of Minnesota) the program was able to utilize testing 
protocols established at APHIS PGPQ to identify apple rootstock 
breeding lines that had been compromised by viruses and viroids.  
Having established in-house RT-PCR and qRT-PCR testing methods 
for eight apple viruses and one viroid [ACLSV, Apple green crinkle 
associated virus (AGCaV), AHVd, ApMV, Apple rubbery wood-
associated virus type 1 (ARWaV-1), Apple rubbery wood-associated 
virus type 2 (ARWaV-2), ASGV, ASPV, and CCGaV] the census 
found that out of 1,395 tests only 186 were positive. Most times, the 
same rootstock was infected by more than one virus (mixed infec-
tions). Analysis of the co-presence of viruses in these rootstocks with 
mixed infections (Figure 3) revealed that ACLSV, ASPV, ARWaV-1, 
ARWaV-2, and CCGaV were often found together, whereas ASGV 
was not associated with these except for ARWaV-2.  We are utilizing 
this information to target elite apple rootstock lines for eradication.

Cryotherapy and Thermotherapy Experiments to 
Eradicate ASGV, ACLSV and AHVd from Elite Rootstock 
Breeding Lines
	 The Geneva breeding program has adopted a procedure to 
establish “clean” propagation material at key centers and micro-
propagation laboratories prior to release of elite breeding lines into 
the commercial stream as rootstock cultivars.  While preparing to 
release a set of new apple rootstocks for the U.S. industry, the pro-
gram collaborated with Foundation Plant Services in Davis, CA and 
APHIS PGQP in Beltsville, MD to index plant material with what is 
known as High Throughput Sequencing (HTS) or Deep Sequencing, 
which is a powerful technology that allow the detection of known 
viruses that also include variants that might escape regular RT-PCR 
testing, including novel viruses. This procedure found that some 
of the stocks were infected by viruses.  At the same time, Dr. Bet-
toni and Dr. Volk at USDA ARS National Laboratory for Genetic 
Resources Preservation (NLGRP), were working on discovering 
new ways to eradicate viruses from apple germplasm destined for 

 
Figure 1.  G.935 apple rootstock grafted with a virus laden strain of ‘Honeycrisp’ (left) and a 
virus cleaned version of the same strain (right) planted in Ephrata, WA (Willow Drive Nursery). 

Figure 2. Comparison of virus-
positive (left) and virus-negative 
(right) ‘McIntosh’ grafted on G.16 
rootstock in 2003.

 
Figure 2. Comparison of virus-positive (left) and virus-negative (right) ‘McIntosh’ grafted on 
G.16 rootstock in 2003. 

 
Figure 3.  Clustered correlation coefficients showing the co-presence of viruses in breeding lines 
of the Geneva® apple rootstock breeding program. 
Figure 3.  Clustered correlation coefficients showing the co-presence 
of viruses in breeding lines of the Geneva® apple rootstock breeding 
program.
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cryopreservation.  As a result, a 
collaboration ensued between the 
Geneva breeding program and 
NLGRP to investigate whether 
thermotherapy or cryotherapy 
alone or in combination could 
effectively eradicate ACLSV, 
ASGV and AHVd from in vitro 
cultures of four apple rootstocks 
developed in the Cornell-Geneva 
apple rootstock breeding program 
(CG.2034, CG.4213, CG.5257, 
and CG.6006) (Figure 4). For 
thermotherapy treatments, in 
vitro plants were treated for four 
weeks at 36°C (day) and 32°C 
(night). Plant vitrification solu-
tion 2 (PVS2) and cryotherapy 
treatments included a shoot tip 
preculture in 2 M glycerol + 0.8 
M sucrose for 1 day and then 
exposure to PVS2 for 60 or 
75 min at 22°C, either without 
or with liquid nitrogen (LN, 
cryotherapy) exposure. Combi-
nations of thermotherapy and 
PVS2/cryotherapy treatments 
were also performed. Shoot tips 
were then warmed, recovered on 
growth medium, transferred to 
the greenhouse, grown, placed 
in dormancy inducing conditions, 
and then grown again prior to 
sampling leaves for the presence 
of viruses and viroids. Overall, 
thermotherapy combined with 
cryotherapy treatments resulted 
in the highest percentage of virus- 
and viroid-free plants. The work 
was published in the journal Plants in early 2022 (Bettoni et al., 
2022). Although the efficacy of the combination of thermotherapy 
with cryotherapy has been reported for eradication of some apple 
viruses, to the best of our knowledge, this is the first study report-
ing success in eradicating of AHVd from infected in vitro-cultured 
apple rootstock plants. This combination of procedures has great 
potential for producing virus and viroid-free planting materials for 
the apple industry. Furthermore, it could also be a valuable tool to 
support the global exchange of apple germplasm.  We are in the 
process of replicating the eradication procedure in Geneva, NY with 
some promising results.

Investigation on the Genetics of Sensitivity to Viruses in 
the Geneva Apple Rootstock Breeding Program
	 As a result of the issues discovered with the rootstock ‘G.935’ 
when grafted with certain strains of ‘Honeycrisp’ and ‘Red Deli-
cious’ that had been found to contain a somewhat rare mixture of 
viruses and viroids (Wright et al., 2020), the Geneva apple root-
stock breeding program initiated a collaboration with Willow Drive 
Nursery to test how widespread the sensitivity was within some of 
the elite germplasm of the breeding program and to utilize some 

of the breeding populations to determine the genetics of sensitiv-
ity.  Willow Drive Nursery had obtained virus-free and virus-laden 
material from the same ‘Honeycrisp’ strain that was associated with 
the slow decline experienced with ‘G.935’ (Figure 1) and grafted 
that material on a set of 12 rootstocks that represented some of the 
elite material available at that time (2017). Overall, the preliminary 
trial revealed that the presence of the virus cocktail inhibited growth 
on most rootstocks; however, some were more affected than others 
(Figure 5).  In 2020, these preliminary results led to the prepara-
tion and planting of a larger replicated experiment featuring 165 
different rootstock breeding lines grafted with both virus free and 
virus laden scions of the same ‘Honeycrisp’ strain.  The experiment 
is in progress and has already produced some preliminary growth 
data that will be used to discover genetic links to virus sensitivity.  
These links will enable the breeding program to preselect material 
that is not hypersensitive to viruses and perhaps discover the genes 
underlying such hypersensitivity in the Geneva apple rootstock 
breeding program. Root systems of G.935 and G.969 are obviously 
being compromised by viruses, and in an effort to understand the 
mechanism by which root growth is being inhibited by viruses 
we have initiated another experiment (Figure 6) using aeroponics 
to test if root growth is being repressed by viruses and featuring 

 
Figure 4. In vitro infected Malus plants undergoing therapy treatments; A) CG 5257 prior to 
thermotherapy exposure; B) plants during thermotherapy treatment; C) CG 5257 after 4 weeks of 
thermotherapy; D) CG 6006 prior to shoot tip excision; E) 1 mm shoot tip excised from CG 
5257; F) shoot tips incubated on plant vitrification solution 2 (PVS2); G) PVS2-treated shoot tips 
placed onto a thin layer of PVS2 on sterile aluminum foil strips and then plunged into liquid 
nitrogen; H) CG 5257 exhibiting regrowth after eight weeks; and I) treated in vitro plants prior to 
shipment to Geneva, New York for greenhouse plant establishment.  
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exposure; B) plants during thermotherapy treatment; C) CG 5257 after 4 weeks of thermotherapy; D) CG 6006 
prior to shoot tip excision; E) 1 mm shoot tip excised from CG 5257; F) shoot tips incubated on plant vitrification 
solution 2 (PVS2); G) PVS2-treated shoot tips placed onto a thin layer of PVS2 on sterile aluminum foil strips and 
then plunged into liquid nitrogen; H) CG 5257 exhibiting regrowth after eight weeks; and I) treated in vitro plants 
prior to shipment to Geneva, New York for greenhouse plant establishment. 
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several rootstocks including G.890 (symptomless), G.935, and 
G.969 grafted with virus-laden (V) and virus-free (VF) versions of 
a ‘Honeycrisp’ strain.  The aeroponic system allows easy access to 
roots (Figure 7) for studying gene expression and measuring growth.

Conclusions
	 Viruses are detrimental for apple production and the nursery 
industry; therefore, they should be avoided whenever possible. 
Geneva® rootstocks G.41, G.202, G.222, G.214, and G.890 have 
not displayed the hypersensitivity of G.814 and G.16 or the slow 
decline that G.935 or G.969 experiences with certain virus-laden 
scion cultivars. Recent experiences with G.969 grafted with virus-
laden ‘Granny Smith’ have shown that G.969 seems to have similar 
sensitivity as G.935 to one or a combination of latent viruses.  In-
terestingly, in a current field trial with virus-laden ‘Granny Smith’ 
which includes G.969 and G.814, only G.969 is struggling, whereas 
G.814 seems to be growing well, perhaps indicating some genetic 
specificity to the viral factors in this strain of ‘Granny Smith’.  The 
discovery that heat therapy combined with cryotherapy is able to 
eradicate even one of the most recalcitrant viruses is a big step 
toward the eradication of viruses from the breeding program.  The 
Geneva rootstock breeding program is committed to understanding 
the genetic basis of this phenomenon and to providing virus free or 
‘cleaned’ material to the industry.  
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Figure 5. Preliminary results showing the comparative tree growth (mm diameter) of 
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Figure 6. Several apple rootstocks including G.890, G.935, and G.969 grafted with virus-laden 
(green tags) and virus-free (white tags) versions of a ‘Honeycrisp’ strain being grown in 
aeroponics to test if root growth is being repressed by viruses. 

Figure 5. Preliminary results showing the comparative tree growth (mm diameter) of 
experimental apple rootstocks grafted with virus-laden (V) and virus-free (VF) versions of a 
‘Honeycrisp’ strain. Mention age of tree?

  
Figure 5. Preliminary results showing the comparative tree growth (mm diameter) of 
experimental apple rootstocks grafted with virus-laden (V) and virus-free (VF) versions of a 
‘Honeycrisp’ strain. Mention age of tree? 

 
Figure 6. Several apple rootstocks including G.890, G.935, and G.969 grafted with virus-laden 
(green tags) and virus-free (white tags) versions of a ‘Honeycrisp’ strain being grown in 
aeroponics to test if root growth is being repressed by viruses. 
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Figure 7.  Apple trees grown in aeroponics to gain easy access to roots during experiments. Figure 7.  Apple trees grown in aeroponics to gain easy 

access to roots during experiments.
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