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1 What are rootstocks?

All commercial temperate zone fruit trees are composed of an aerial ‘scion’
cultivar grafted or budded on another cultivar which serves as the support
root system referred to as the rootstock.” The practice of budding or grafting
desirable scion cultivars on rootstocks has been practiced for centuries due
to the highly heterozygous nature of tree fruits (Tukey, 1978), most of which
do not reproduce ‘true to type’ by seed. Thus, in general, the seed from a
desirable fruit variety will not result in a tree which produces the same fruit
characteristics as the parent. To overcome this problem, fruit growers learned
many centuries ago that a desirable genotype could be propagated asexually
by budding (a single bud) or grafting (a small section of shoot with several
buds) onto other plants with roots (usually the same or a closely related species)
and then allowing only the bud of the desirable cultivar to grow and develop
into each tree's canopy, thus creating multiple trees of the desirable cultivar
(Cummins, 1973; Larsen, 1976). For example, all of the 'Red Delicious’ apple
(Malus domestica) trees in the world originated from a single tree discovered
http://dx.doi.org/10.19103/AS.2018.0040.02
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2 Advances in fruit tree rootstocks

in Peru, lowa, in the 1800s. Thereafter, buds from the original tree were budded
onto other apple seedlings, and later interspecific hybrid clones, that serve as
rootstocks to produce the millions of ‘Delicious’ trees that have been grown
around the world from until the present day. Similarly, ‘Montmorency’ sour
cherry (Prunus cerasus) is a 400+ year-old cultivar that originated in France, but
comprises the majority of sour cherry production in the United States, where
it is grown primarily on Prunus mahaleb seedling rootstocks. The general
history of all major fruit cultivars, including subtropicals such as Citrus as well
as temperate zone fruit and nut trees, is similarly based on the propagation of
superior fruiting genotypes on different rootstock genotypes. Not only does
this provide a way to reliably reproduce the superior traits of the scion, but
also a way to adapt its production to different localized soils, climates, and
production systems.

Historically, seedlings were used as rootstocks for deciduous fruit tree
species such as apple, pear (Pyrus communis), peach (Prunus persica), tart
and sweet (Prunus avium) cherry, apricot (Prunus armeniaca), and plum
(Prunus domestica and Prunus salicina) (Sax, 1949). The classic way to produce
a rootstock is to plant seeds and when the young seedling is 30-50 cm tall,
bud or graft onto that seedling the desirable scion cultivar. However, with
the exception of some peach and almond rootstocks, since each seedling
rootstock is a unique genotype, there can be considerable variability in its own
growth characteristics as well as the characteristics it may impart to the scion
due to the heterozygosity of each fruit species, resulting in variability in tree
performance in the orchard. Potential variations in seedling rootstocks include
vegetative vigor, tree shape, and size, yield, precocity of fruit bearing, fruit size,
and susceptibility to root diseases and abiotic stresses. Nevertheless, almost
all commercial orchards used seedling rootstocks until the twentieth century.
While this chapter focuses mostly on apple, it exemplifies the various inherent
rootstock properties and rootstock-induced qualities on grafted scions that can
be found in other temperate fruit rootstocks.

2 History and modern use of clonal rootstocks in apple

Several millennia ago (possibly by the fourth century AD), rootstocks that had
unique desirable characteristics began to be selected and propagated asexually
by rooted cuttings or via stoolbed or layerbed techniques (Tukey, 1964).
One such apple rootstock named ‘Paradise’ was dwarfing. It was propagated
vegetatively in Europe and used in home gardens for several centuries before
the modern era of rootstock improvement (Lindley, 1828; Loudon, 1822).
A number of other dwarfing apple rootstocks were in use and propagated
clonally by the late nineteenth century, but duplication of names and confusion
of rootstock identity hindered adaptation for commercial production. To solve
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this problem, Hatton at East Malling Research Station (EMRS) in the United
Kingdom (UK) began collecting and categorizing apple rootstocks from all
over Europe. These were named using the letters EM (East Malling) and roman
numerals I-IX (Hatton, 1917, 1919). Later, the EM designation was changed to
simply M and the numbers from Roman to Arabic numbers. The series was
expanded to 16 genotypes in 1914, and later additional rootstocks 17-24 were
listed in 1924.

The most dwarfing rootstocks of the Malling series (M.8 and M.9) initially
were considered too dwarfing for commercial orchards and more suitable
for home gardens. However, from the semi-dwarfing Malling rootstock series
(M.2, M.4, M.7, M.13 etc.), several were adopted by commercial apple growers
in England and other European countries (Hatton, 1920). By the late 1950s,
clonal rootstocks began to replace seedling rootstocks in most of Europe,
North America, Australia, and New Zealand. This facilitated the development
of planting systems at double or triple the planting density of trees on seedling
rootstocks, which typically were planted at 150 trees/ha. At roughly the same
time in the 1960s, Don Heinicke in the United States and Don McKenzie in New
Zealand independently developed the central leader tree training system for
use with semi-dwarfing clonal rootstocks (Heinicke, 1975; McKenzie, 1964,
1985). This planting system revolutionized apple growing and was adopted
worldwide. Its primary advantage was earlier production because of greater
precocity of the semi-dwarfing Malling rootstocks and greater cumulative
production due to the higher planting density (Palmer et al., 1989; Sansavini
et al., 1981; Sansavini and Musacchi, 2000).

The more dwarfing rootstocks of the Malling series, particularly M.9,
began to be used in some German and Dutch orchards in the 1960s, leading
to the development of the slender spindle tree form by Bob Wertheim in the
late 1960s (Wertheim, 1978). These dwarf slender spindle trees were planted
at 1500-2000 trees/ha. Initially, this concept was only accepted in Northern
Europe where land for orchards was limited (Wertheim, 1981; Wertheim and
Callesen, 2000). In areas of the world where land was more plentiful, most
growers preferred to plant semi-dwarfing rootstocks on large land areas.

In France, a different tree form that could be used with semi-dwarfing or
dwarfing clonal rootstocks, named the Vertical Axis, was developed by Jean
Marie Lespinasse in the mid-1970s. Trees were planted at a density of 1000-
1500 trees/ha. Although in France this tree form was developed mostly with
M.9, growers in many other parts of the world mostly used semi-dwarfing
clonal Malling rootstocks in the 1980s and 1990s (Barden, 1995; Crassweller
and Smith, 2001).

In the late 1980s, many research and extension personnel around the
world began to evaluate and promote higher tree densities on M.9 rootstock
trained to various versions of the slender spindle tree form. However, growers
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4 Advances in fruit tree rootstocks

in most regions were hesitant to adopt M.9 rootstock. A notable exception was
Northern Italy where Herman Oberhofer, an extension specialist, began to take
groups of growers to Holland to observe high-density orchards on dwarfing
rootstocks, and within 10 years the vast majority of Northern Italy apple farms
had converted to slender spindle on M.9 rootstocks (Comai and Widmann,
1972).

Through the 1990s and 2000s, most other apple-growing areas of the
world switched from clonal semi-dwarfing rootstocks to clonal dwarfing
rootstocks (Hampson et al., 2002; Robinson et al., 1991a). This happened more
rapidly in some countries than others. In some countries, an intermediate step
was taken by using a semi-dwarfing rootstock with the scion grafted on M.9 as
an interstock. These interstem trees were more dwarfing than those on semi-
dwarfing rootstocks, but not as dwarfing as those directly on M.9 rootstock
(Domoto, 1982; Ferree et al., 1982; Koike and Tsukahara, 1988; Lord, 1983).
In almost all regions of the world that used interstem trees, these have now
been replaced by fully dwarfing rootstocks. Currently, most areas of Europe,
North and South America, and Australia, New Zealand, and South Korea, use
dwarfing stocks and planting densities greater than 2000 trees/ha and some as
high as 6000 trees/ha. However, in some areas of the world, particularly China,
Japan, and India, adoption of dwarfing clonal rootstocks has been slow and
growers continue to use seedling, or semi-dwarfing, rootstocks with limited use
of interstem trees (Ma et al., 2013; Tamai et al., 2002, 2003).

3 Rootstock improvement efforts

After the initial effort to name and categorize European rootstocks in the early
1900s, Preston at EMRS conducted controlled crosses of rootstocks which
resulted in the release of M.26 in 1959 and later M.27 in 1975 (Preston, 1967;
Preston and Belcher, 1982). M.26 was a cross of M.16 and M.9 and found
widespread acceptance around the world since it was slightly more vigorous
than M.9, but less vigorous than M.7. M.27 has found only limited use because
it is even more dwarfing than M.9 and often with reduced fruit size (Wertheim
and Scholtens, 1994).

The introduction of Malling rootstocks to Australia and South Africa
revealed an important weakness, their susceptibility to woolly apple aphid
(Eriosoma lanigerum) (Dozier et al., 1974). These aphids colonize the tops of
trees, but in areas with cold winters, they are killed and then re-colonize slowly
the next year. However, in areas with mild or warm winters, they colonize the
root system and then re-infest the aerial parts of the tree rapidly the next year.
The need for woolly apple aphid-resistant rootstocks led to a joint breeding
program between EMRS and the Merton Research Station in the UK. Crosses of
Malling rootstocks with Northern Spy resulted in a new series of rootstocks, the
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Malling-Merton (MM) series numbered from 101 to 114. All are semi-dwarfing.
Of these, the most important were MM.104, MM.106 and MM.111 (Preston,
1966). They were adopted by growers in many apple regions in the world and
were utilized in the Central Leader system at densities from 500 to 800 trees/ha.
MM.106 is highly productive, but also highly susceptible to Phytophthora root
rot, which limited its use in wet soils (Browne and Mircetich, 1993). MM.111 is
less productive and slightly more vigorous than MM.106, but is very durable
and tolerant to drought stress (Atkinson et al., 1997; Tworkoski et al., 2016).

The need for better rootstocks has prompted many institutions around the
world to make crosses for breeding objectives that have varied by institution,
and have been as simple as improved rooting in the propagation bed or as
complex such as multiple resistances to rootstock biotic and abiotic stresses.
Rootstock breeding programs have been conducted in Sweden (Alnarp 2),
Poland (P series) (Czynczyk and Omiecinska, 1989), Germany (Supporter®
and Pillnitz series) (Fisher, 1994), Czech Republic (JTE series) (Dvorak, 1983;
Webster and Tobutt, 1994), Romania (Voinesti series) (Mazilu et al., 1999),
Russia (Budagovsky series) (Kuldoshin and Sadowski, 1999; Webster and
Tobutt, 1994), China (SM series) (Gao et al., 2011; Rong et al., 2011; Wan et al.,
2011), Japan (Morioka series) (Bessho and Soejima, 1992; Tsuchiya, 1988),
Canada (Ottawa, KSC, SUM and Vineland series) (Elfving et al., 1993; Embree,
1985; Khanizadeh et al., 2005; Spangelo et al., 1974), New Zealand (IFO series)
(Bus et al., 2008), Michigan, USA (MAC series) (Carlson and Perry, 1986), and
Geneva, New York, USA (Geneva® series) (Cummins and Aldwinckle, 1974;
Fazio et al., 2015b). There are now more than 100 named rootstocks in the
world (Table 1).

One of the more impactful breeding programs started in 1937 at the
Michurinsk Research Station in Russia. The primary objective of this program
was increased winter hardiness. They used Russian red leaf rootstock as their
source of cold hardiness and M.8 as their source of dwarfing. They released
Budagovsky 9 (B.9) in 1975 as an M.9-sized stock with greater cold hardiness
than M.9 (Czynczyk, 1979). It has had a worldwide impact and has been planted
widely in the United States and Northern Europe. Researchers in the United
States (LoGiudice et al., 2006; Russo et al., 2008b) showed B.9 is also resistant
to fire blight (caused by Erwinia amylovora). The nature of the resistance
is unusual since the young plant is sensitive to fire blight, but with age the
grafted tree shows field-level resistance. Other rootstocks which have had
limited acceptance are B.491 and B.118. A fourth and more recent rootstock,
B.10 (B.62-396) is rapidly gaining acceptance in the United States (Autio et al.,
2017a,b). It is slightly more vigorous than M.9, but is highly productive like M.9
and shows fire blight tolerance similar to B.9. Several other selections from the
Budagovsky breeding program have been evaluated in North America, but
none has shown high productivity and dwarfing (Autio et al., 2017a,b).
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8 Advances in fruit tree rootstocks

Another breeding program that has had significant impact has been the
German program at Pillnitz. Fisher has released four rootstocks, the Supporter®
series 1-4. Supporter® 4 is similar to M.26, being highly productive, and has
been planted to some extent in several European countries (Fischer et al.,
1997). It has had little importance outside of Europe because it is susceptible
to fire blight and replant disease (Autio et al., 2013; Auvil et al., 2011).

The breeding program in Poland has released a number of cold-hardy
rootstocks which have been used in Poland and to a limited extent in other
European countries. The most important have been P.22 (very dwarfing, similar
to M.27)and P.16 (similar to M.9, but more winter hardy). While these have been
tested worldwide, their implementation has been somewhat slow because they
did not offer significant improvements over the current standard rootstocks
(Marini et al., 2006).

Mark rootstock, bred by Robert Carlson and released by Michigan State
University in the early 1980s, had its most significant impact in the United
States from 1985 to 1995. Mark is slightly more vigorous than M.9 and is winter
hardy and very productive. However, as the trees aged, a proliferation of non-
organized tissue developed just below the soil line, leading to weak tree growth
and small fruit size (Travis and Rytter, 1995; Travis et al., 1999; Warmund et al.,
1993).

Of the four Canadian breeding programs, Ottawa 3 has had the most
impact. It is very winter hardy and very productive, with vigor similar to M.9. It
was planted to a limited extent in the late 1980s and early 1990s, but problems
with transplant losses, virus sensitivity, and difficulty in propagation limited
its use (Ferree, 1992; Rioux et al., 1984; Spangelo et al., 1974). Currently, five
rootstocks from Vineland, Ontario, are under development and may have
importance in the future (Hampson, 2012; Hampson et al., 2012). The KSC and
SJM rootstocks have not had commercial importance.

Another impactful rootstock breeding program has been at the Geneva
campus of Cornell University. The program was started by James Cummins
in 1969 and was joined by Herb Aldwinckle in 1971 to develop a series of
rootstocks that not only conferred high productivity and dwarfing, but also
resistances to the most important rootstock diseases and biotic stresses
(Aldwinckle et al., 1972; Cummins and Aldwinckle, 1974). They extensively
used 'Robusta 5' rootstock as a parent since it is resistant to fire blight and other
diseases (Gardner et al., 1980). Other parents were either M.9, M.26, M.27, or
Ottawa 3. They screened all progeny for resistance to fire blight and tolerance/
resistance to crown and root rot caused by Phytophthora cactorum. They also
screened for woolly apple aphid resistance and selected for low number of
root suckers or burr-knots (Cummins et al., 1983). These were then selected
for high productivity, dwarfing, and cold hardiness. Interestingly, some of the
Geneva® rootstocks also have shown tolerance/resistance to apple replant
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disease (ARD), although that was not a breeding objective. The program was
converted to a joint breeding venture between Cornell University (Geneva)
and the USDA-ARS in 1998, and it continues to make crosses and release new
rootstocks under the leadership of Gennaro Fazio. The breeding objectives
have evolved through time. While these include previous objectives of fire
blight resistance, crown rot resistance, cold hardiness, low root suckers, and
low burr-knots, newer objectives include replant disease tolerance, specific
nutrient uptake (especially Ca), low chill induction requirement, drought
tolerance, water-use efficiency (WUE), tolerance to sodic soils, tolerance to
particular soil pH levels (high and low), and graft union strength (Fazio et al.,
2015b). As of 2019, 14 rootstocks have been released by the Geneva® program
and several have achieved importance in the United States and some other
parts of the world. Those that are being produced in large volumes (>500,000
plants per year) include, in order of importance, G.41, followed by G.11, G.935,
G.969,G.890, and G.213. The total worldwide sales of these rootstocks was 8.8
million in 2017.

Currently in the world, there are only five to seven rootstock breeding
programs. In addition to the Geneva® program, there are three programs in
China, one in New Zealand, and one in Russia. A unique objective of one of the
Chinese programs is apomixis in rootstocks, which would allow propagation of
rootstocks by seed. This would drastically change the propagation industry in
the world. Primary objectives of these programs include cold hardiness (Russia,
China), fire blight resistance (New Zealand), and drought tolerance (China)
(Gaoetal., 2011; Ma etal., 2012; Shaetal., 2011; Wan etal., 2011; Zhang et al.,
2011).

4 Rootstock propagation

Apple rootstocks are propagated either by seed, cuttings, layering, stooling,
or by tissue culture. When propagated by seed, the grafted trees are usually
vigorous, but also variable in tree size and productivity due to the variability
inherent in seeds (Visser and Schaap, 1967). Thus, almost all apple rootstocks
in the world are propagated asexually by cuttings, layerbed, or stoolbed. Only
since about 2008 have apple rootstocks been propagated commercially by
tissue culture (Castillo et al., 2015).

Propagation in all areas of the world, except some Asian countries
including China, is mostly done by layerbed or stoolbed. However, in China
most rootstocks are propagated by rooting of hardwood cuttings (Kwon et al.,
1999; Yoshida and Muramatsu, 1998). This is due to the difficulty of propagating
Malling stocks (which are used in the west) by cuttings (Sun and Bassuk, 1991),
while rootstocks used in China have the genetic makeup to root well from
cuttings.
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10 Advances in fruit tree rootstocks

Typically, propagation by stoolbed (plants planted vertically) or by layerbed
(plants planted on an incline and then laid flat at the end of the first season) is
done by planting rootstock plants in a row in a shallow trench (Hartmann et al.,
1997). After the first year's growth, the plants are cut back to three buds on
each shoot for a stoolbed or the shoots are laid horizontal along the ground in
the bottom of the trench for a layerbed. Later in the spring of the second year,
when shoots from the ‘mother’ plants reach about 30 cm tall, sawdust, peat, or
soil is mounded up to cover the lower parts of the new shoot. The sawdust is
kept moist by irrigation and additional layers of sawdust or soil are mounded
up through the season to a height of 30 cm. In the late summer and fall and
during the winter in climates with mild winters, the shoots develop roots from
one to five nodes along the lower stem of the 1-year-old shoot. These shoots
are harvested from the mother plants in late fall, winter, or early spring by
cutting the stem below the new roots, but leaving intact the mother plant. The
process is repeated each year by sweeping away the sawdust or soil from the
mother plants in the spring, exposing the horizontal shoots in the layerbed or
the upright plant in the stoolbed, and then adding more sawdust or soil again
as new shoots reach 30 cm in height.

The ability to produce roots in a stoolbed or as a rooted cutting differs
among rootstocks (Villeneuve, 1986). A related rootstock trait is the tendency to
produce burr-knots which are aboveground masses of root initials. Burr-knots
are considered a defect and create a risk of rootstock infection by the bacteria
that causes fire blight (Marini et al., 2003). Good rooting in a stoolbed generally
is associated with a tendency to produce burr-knots. Many of the Malling stocks
produce burr-knots, but also can be propagated easily in a stoolbed, while
many of the Geneva® rootstocks root poorly in a stoolbed and do not produce
burr-knots.

The stoolbed/layerbed method has been used for several centuries to
propagate apple rootstocks, with only small improvements in technique. This
method is an extension of what happens naturally with some apple trees where
root-derived suckers come up from the ground season after season (Costante
et al., 1983). Rootstock clones that root well with this system have been
successful commercially, while those that root poorly in this system usually
have been discarded (Robinson et al., 1997). However, the 2005 introduction
of G.41 (which does not root well in a layerbed) stimulated the development
of improved new techniques. Adams (2010) found that applications of the
gibberellin biosynthesis inhibitor, prohexadione-calcium, to the shoots of
rootstock layerbeds when the shoots were 90-100 cm tall, resulted in a
reduction in shoot growth, but better rooting at the base of the shoot. Fazio
(unpublished data) also observed in commercial nursery settings that planting
G.41 in a vertical position in a stoolbed at double or triple the normal density
resulted in better rooting of each shoot. This was due to the more limited
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number of shoots produced by each stooling mother plant (3-5 on a high-
density stool plant vs. 10-15 from a layerbed plant) and the competition for
resources between shoots. Lastly, Adams (2010) showed that if the stoolbed
was established using tissue culture mother plants, rooting was improved
significantly, and the increased rooting lasted for several years. These three
improvements in stool/layerbed technology have allowed the successful
stoolbed propagation of difficult-to-root rootstocks such as G.41.

A second important method of apple rootstock propagation has been the
use of hardwood cuttings. This is the main method of propagation of rootstocks
in China, but it is uncommon in other parts of the world. The most common
rootstock in China is Malus prunifolia, which roots readily from cuttings (Yao
et al., 2001). Typically, dormant (hardwood cuttings) are dipped in a synthetic
auxin (indolebutyric acid, IBA) and then planted in a rooting bed of sand/sail
in a plastic-covered high tunnel greenhouse and kept in high humidity until
cuttings have rooted. They are then transplanted to a nursery where they are
budded with a scion variety (Rong et al., 2011; Wen et al., 2018). This is seldom
successful with Malling or Budagovsky rootstocks due to their low rooting
percentage (Bassuk and Howard, 1980). Recently in the United States, several
of the new Geneva® rootstocks have been propagated by softwood cuttings.
Typically, green cuttings consisting of the tops of tissue-cultured plants are
removed and dipped in rooting hormone (IBA), planted in a rooting bed of
artificial media (vermiculite and peat moss), and kept under a plastic tunnel with
misting until rooted. When the source of the green wood is micro-propagated
material, these cuttings are more successful (Quamme and Hogue, 1994).
These rooted plants are transplanted to a nursery and then budded in the late
summer with a scion variety (Fleming, pers. comm.).

The newest large-scale commercial method of propagation is via tissue
(tip) culture. Tissue culture consists of harvesting a shoot apex (an explant) and
growing it on an artificial medium with a complete set of nutrients (Castillo
et al., 2015; Geng et al., 2015). The plant hormones (or synthetic versions of
plant hormones) are placed in the medium and their relative concentration
is modified to obtain specific growth characteristics. By varying the balance
of auxins and cytokinins, the explant is induced first to multiply by producing
callus and shoots. These plants are divided and subdivided multiple times in
an iterative process that produces thousands of new explants from an original
plant. Later, the hormone balance is modified by increasing auxins to induce
rooting. These small, sterile, rooted plantlets are then transplanted into a soil-
less medium and grown in a mist tunnel for several weeks for the first phase of
acclimation (‘hardening off'). Then they are moved to larger pots in a regular
greenhouse to acclimate to higher light levels, and finally are moved to the
open air. These rooted plants can then be planted in a nursery and budded
with a scion variety. This method was tried in the 1980s for propagating M.9
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and Mark, but problems arose when the plants developed differently in the
field, with many more burr-knots and vigorous growth (James and Thurbon,
1979, Webster and Jones, 1989). This may have been due to epigenetic effects
of the hormones used in the tissue culture process, or it may have been simply
a mix up of plant material and the propagation of a seedling instead of M.9 or
Mark. This occurred before the era of DNA fingerprinting, thus the problem was
never resolved. Nevertheless, because of those bad experiences in Europe,
the use of tissue culture to propagate apple rootstocks was banned and fell
into disfavor. In the mid-2000s, Gennaro Fazio began working with various
tissue culture labs in the United States in an effort to propagate G.41 via tissue
culture since it is difficult to propagate by stoolbed or cuttings. Field trials of
trees from these tissue-cultured rootstocks performed similarly to stoolbed
propagated rootstocks (Autio et al., 2005, b); by 2010, commercial quantities of
G.41 and other Geneva® rootstocks were being propagated by tissue culture.
This success stimulated others in the world to accept tissue-cultured Geneva®
rootstocks. By 2017, there were more than three million Geneva® rootstocks
being propagated by tissue culture each year.

Important advances in both the techniques of apple rootstock tissue
culture and the improvements in tree performance from tissue-cultured
plants have been achieved. Each tissue culture company has developed
proprietary methods to achieve commercial success. These individual trade
secrets are not widely shared. However, the results in the nursery and in the
orchard have been published. Adams (2010) showed that liners from tissue-
cultured plants have more roots and a more fibrous root system than stoolbed
plants. The improvement in rooting carried over to the stoolbed where liners
from a stoolbed that had tissue-cultured mother plants had more roots than
liners from a stoolbed started with conventional plants. Because of the more
fibrous root system, tissue culture plants establish better in the orchard. In
addition to propagation benefits, micro-propagated plants feature a more
vigorous root system with many more primary roots than conventional liners.
Some nurseries are offering these well-developed root systems in a potted
tree nursery production system that can be transplanted with few losses even
during mid-summer.

Currently, the price of a stoolbed-produced rooted rootstock liner or a
rooted cutting is less than a tissue-cultured, rooted rootstock liner. Nevertheless,
all three methods are used commercially to propagate apple rootstocks
worldwide. However, the stoolbed/layerbed method predominates.

5 Rootstock evaluation

Systematic rootstock evaluation began with the work of Hatton at EMRS in the
early 1900s (Hatton, 1917). Their published work was a guide for growers and
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researchers alike. Individual researchersin Europe and North America continued
individual comparative trials of rootstocks through the 1960s (Carlson, 1974;
Nelson and Tukey, 1955). Later researchers in other countries also began
comparative rootstock trials, including New Zealand, Australia, South Africa,
Japan, and more recently China (Bergh, 1992; George and Nissen, 1986;
Racsko et al., 2011; Tustin and Cashmore, 1994; Tustin et al., 1993). However,
the trial results in one climate and soil type often differed from results of other
trials in other climates. This led to substantial confusion and differing opinions
among researchers and growers. In 1976, a group of researchers in eastern
North America launched a coordinated rootstock testing program named the
NC-140 project (Ferree, 1991, 1992; Ferree and Perry, 1989). This group began
conducting uniform multilocation orchard comparisons of rootstocks and met
annually to compare results. The project was later expanded across the United
States and now includes participants from Canada and Mexico as well. The
group also conducts comparative research trials with peach, cherry and pear
rootstocks (Cowgill etal., 2017). Over the 45-year existence of this project, it has
conducted 18 trials of apple rootstocks (approximately one every 3 years). With
each new trial, the latest rootstocks from around the world have been included.
The primary rootstock characteristics evaluated in the coordinated NC-140 trials
include tree survival in various climates, level of dwarfing, precocity, yield, yield
efficiency, fruit size, number of root suckers, and burr-knots. A similar group of
researchers from Europe was organized in 2003 and is conducting coordinated
uniform multilocation rootstock trials in several European countries (Kviklys,
2011). Another group led by Leo Rufato began multilocation coordinated trials
in Brazil in 2014.

In addition to coordinated trials, individual researchers have focused
on evaluations of cold hardiness, graft union strength, virus susceptibility,
tolerance to replant disease, nematode tolerance or resistance, and mineral
nutrient profiles.

6 Rootstock effects on scion traits and mechanisms

Rootstock genotype has numerous effects on the scion, including vigor,
precocity, yield efficiency, partitioning of carbon, mineral nutrient profile,
branch angle, and graft union strength (Fig. 1). In addition, rootstock tolerance
or susceptibility to soil characteristics, climate stress, and biotic stresses
determine if the tree survives, is stunted, or grows well.

6.1 Dwarfing

The most desirable rootstock characteristic is dwarfing. In most cases, seedling
rootstocks confer the most vigor. The current list of clonal rootstocks range in
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Figure 1 Principal components (PCA analysis) of variables affected by rootstocks:
cumulative fruit number, cumulative yield, fruit number, yield, mean biennial bearing
index, fruit size, transpiration (E), trunk cross-sectional area (TCA), stomatal conductance
(gs), carbon assimilation (A), branch angle, return bloom, cumulative crop load, cumulative
yield efficiency, crop load, and yield efficiency. The arrows indicate the effects that are
positively correlated (in the same quadrant) and those that are negatively correlated
(opposite quadrants).

vigor from 100% to only 10% of seedling (Table 1). This vast range of dwarfing
has allowed a 10- to 20-fold increase in planting density in modern orchards.
Although the mechanism of dwarfing has been studied intensively for more
than 50 years, the complete explanation of apple dwarfing is still not clear.
In the last 10 years, the genetic basis of dwarfing has been linked to several
genes, Dw1 and Dw2, and possibly a third (Fazio et al., 2014; Foster et al., 2015;
Harrison et al., 2016). The physiological expression of these genes is less clear
as they have not been characterized yet at the molecular level. Physiologists
have measured effects of dwarfing rootstocks on root-supplied hormones and
distinct carbon partitioning, with dwarfing rootstocks inducing a much greater
use of carbon for fruit production compared to root system development. This
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is probably why trees on dwarfing rootstocks have much smaller root systems.
It has been shown that dwarfing in apple is not caused by restricted water
supply to the scion (Olien and Lakso, 1986). While the rootstock may cause
some changes in vessel size, xylem element and vascular resistance to water
is similar in vigorous and dwarfing rootstocks (Tworkoski and Fazio, 2011). In
contrast, dwarfing in peach has been linked to water stress induced by dwarfing
rootstocks (Johnson et al., 2011). Currently, the physiological basis for dwarfing
appears to be a combination of root-supplied signals (maybe hormones) to the
scion, inducing increased flowering, and reduced partitioning of carbon to the
root system and early termination of vegetative growth (Foster et al., 2017; Van
Hooijdonk et al., 2010).

6.2 Precocity

Precocity or induction of early bearing is defined as the earliness of an apple
tree to flower and begin fruiting (Fazio et al., 2014). The physiological trait
of juvenility describes young trees that are grown from seeds which do not
produce any flowers or fruits for several (5-8) years, a phenomenon that seems
to be linked to changes in methylation of the apple genome (Hafiz et al.,
2008). As the trees age, they transition from juvenility to a reproductive stage
of flowering and fruiting. The basis of juvenility may be linked to a plethora
of root signals, including hormones. Gene-altering approaches that modulate
genes involved in flower induction have been shown to reduce this juvenile
phase for breeding purposes (Kotoda et al., 2006; Schlatholter et al., 2018;
Schouten et al., 2009); however, thus far they have not proven successful in
graft transmissible alteration of the juvenile period. When a mature (non-
juvenile) apple scion is grafted on a seedling rootstock (which is juvenile), the
scion may revert to a juvenile-like phase and flowering may be delayed for 5-8
years after grafting. However, when grafted onto a precocious clonal rootstock,
there is no reversion to a juvenile-like phase, with the potential for flowering
to occur in the first or second year in the orchard (Schmidt, 1986). Rootstocks
differ in their effect on scion precocity (Fallahi and Mohan, 2000). Most of the
semi-dwarfing rootstocks from the Malling series, and the Budagovsky series,
are more precocious than seedling rootstocks, but flowering is still delayed 3-5
years after grafting. However, the dwarfing Malling, Budagovsky, and Geneva®
rootstocks are much more precocious, with flowering in the first year in the
orchard or even in the nursery. G.11 rootstock is highly precocious and can
have flowers itself in the nursery. Interestingly, many of the semi-dwarf Geneva®
rootstocks are also highly precocious such as the more dwarfing rootstocks.
Precocity was a selection factor for semi-dwarf Geneva® rootstocks, since the
lack of precocity is a serious flaw in Malling and Budgovsky semi-dwarfing
rootstocks. Precocity induced by the rootstock has a large effect on orchard
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economics, since early production in years 1-5 is important for repaying the
capital investment in a new orchard. The increase in precocity of dwarfing
rootstocks has allowed the planting of much higher tree densities, with
associated higher orchard establishment costs, since the investment can be
paid off rapidly (Lordan et al., 2018a; Reig et al., 2019).

6.3 Yield efficiency and harvest index

A primary criterion to compare rootstocks has been the calculation of yield
efficiency, which is defined as the weight of fruit produced (kg) per unit of trunk
cross-sectional area (TCA in cm?) measured at a set distance above the graft
union (Robinson et al., 1991b). This is a rootstock-scion performance efficiency
measurement since it relates the tree's fruit output relative to the size of tree as
measured by TCA, which tends to be proportional to canopy size up to a point.
This facilitates the comparison of trees on rootstocks of vastly different vigor and
tree size on an orchard-area basis. However, this measure was developed for
comparing trees on rootstocks of varying vigor that were minimally constrained
by allotted orchard space in evaluation trials for which the filling of orchard
space and canopy maturation typically took 6-10 years. It has recently been
recognized that, as long as the primary determinant of canopy size is rootstock
vigor, yield efficiency allows comparative evaluation of differences in rootstock-
induced productivity relative to vegetative growth. However, as orchards have
become more dense, with a primary training/production system focus on filling
allotted orchard space and reaching full production rapidly, the point at which
the canopy completes the filling of its allotted space occurs much earlier, and
therefore pruning intervention to maintain the canopy in that space becomes a
confounding factorto yield efficiency calculations, since the canopy’s productive
areais no longer expanding but the TCA continues to increase for the life of the
tree. Therefore, yield efficiency comparisons are primarily of value only until the
allotted orchard space is filled. Furthermore, as modern orchards are trained
and pruned to more two-dimensional ‘fruiting wall’ canopy architectures, the
inherent rootstock effect on yield efficiency is further confounded due to non-
rootstock-based horticultural interventions.

When fruit production over several years (traditionally 10 in rootstock
comparison trials, perhaps less for higher density training systems) is summed
and the cumulative production is divided by the tree TCA (at the point at
which allotted orchard space is filled), an estimate of harvest index is obtained
(Palmer, 2011; Strong and Azarenko, 2000). Harvest index is the measure of
fruit production compared to vegetative production (branches, leaves, trunk,
and roots) of the tree. However, harvest index is difficult and expensive to
measure, thus the measure of cumulative yield efficiency is used since final TCA
is an estimate of the cumulative vegetative growth of the tree. In the few cases
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where harvest index has been measured directly, dwarfing rootstocks (M.9)
were found to partition 70-80% of annual carbon into fruit and only 20-30% to
vegetative growth, while vigorous rootstocks induce much more partitioning
of carbon into vegetative growth (>50%) (Strong and Miller Azarenko, 1991).

An annual estimate of partitioning of carbon into fruit vs. vegetative growth
can be obtained from the ratio of fruit production (kg) to the incremental
increase in TCA (cm? increase); however, this estimate of annual harvest
index is less commonly used by rootstock researchers. If this annual estimate
was used more, it could show how the partitioning of carbon between fruit
production and vegetative production changes over time, and would allow the
identification of rootstocks that will be problematic over time as the orchard
matures since they continue to have a high fraction of carbon partitioned into
vegetative growth even when the tree is mature.

Rootstock vigor is linked loosely to yield efficiency, with most vigorous,
semi-vigorous rootstocks, and semi-dwarfing having lower yield efficiency than
dwarfing stocks. Interestingly, many of the semi-dwarfing Geneva® rootstocks
have yield efficiencies that are similar to dwarfing rootstocks (Reig et al., 2018;
Russo et al., 2007). This is because high yield efficiency was a selection criterion
for semi-dwarfing Geneva® stocks. The increase in yield efficiency has resulted
in much higheryields per ha for dwarf trees if the dwarf trees are planted at their
optimum tree density, as predicted from their inherent tree size (Lordan et al.,
2018b). The indiscriminate use of high yield efficiency values to plan orchard
designs has resulted in serious errors for the apple industry when scion vigor
is low, and growers choose the most dwarfing rootstocks available because of
their high yield efficiency. This has resulted in many orchards where the trees
do not fill the space allocated to each tree, resulting in moderate yields per
ha even though the yield efficiency of the rootstocks is high. Nevertheless, if
rootstock vigor is sufficient to fill the space quickly, then the high yield efficiency
of a dwarfing rootstock will result in higher yields than a less-efficient rootstock.
This improved mature production is an important factor for sustainable long-
term profitability of high-density orchards on dwarfing rootstocks, compared
to medium and low-density orchards on semi-dwarfing or vigorous rootstocks
(Lordan et al., 2018a).

It seems clear that the impact of rootstocks on carbon partitioning and
flowering is intertwined with the dwarfing effect of the rootstock on the scion.
Since a dwarfing rootstock induces the partitioning of 70-80% of annual fixed
carbon into the fruit, the amount of carbon left for vegetative growth is a small
fraction of that available in a tree on a vigorous rootstock. The mechanism
of increased yield efficiency of dwarfing rootstocks is not completely clear.
Evidence to date indicates that increased root-supplied hormones differ
among rootstocks (Adams et al., 2018; Lordan et al., 2017) and may cause
increased flower initiation and fruit set, which leads to early production in
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the first or second years accompanied by higher partitioning of carbon to
fruits. However, that explanation does not fully explain the dwarfing effect of
rootstocks, since shoots of the scion on a dwarfing rootstock also stop growth
earlier in the season that those on a vigorous rootstock. Nor does it explain why
interstems of varying length decrease vigor and increase early bearing in apple
trees (Carlson and Oh, 1975).

6.4 Influence on leaf and fruit nutrient concentrations

Recently, there has been great interest in rootstock effects on fruit mineral
nutrient profiles. This has been driven by the widespread planting of the
variety ‘Honeycrisp,” which suffers from several fruit disorders including the
calcium-related disorder bitter pit (Baugher et al., 2017; Biggs and Peck, 2015;
Rosenberger et al., 2004). While the modulation of nutrients in the scion by
rootstocks had been described in the past (Lockard, 1976; Rom and Rom,
1991; Tukey et al.,, 1962), the types of rootstocks used in such research were
genetically very similar(Duan etal.,2017; Gharghanietal.,2010; Jin etal.,2012).
Wide crosses performed in the Geneva® breeding program have revealed
significantly different nutrient profiles induced by rootstocks (Fazio et al., 2012,
2013). Some rootstocks cause greater levels of K in the leaves or in the fruit,
while others induce higher levels of Ca in the fruit or the leaves. Such rootstock-
induced differences have been shown for several other nutrients, including N,
P. S, Mg, and B (Reig et al., 2018). Changes in soil pH, for example, caused
differencesin the expected absorption curves for metal ions such as manganese
and iron, indicating that some rootstocks perform better at certain pH values
than others (Fazio et al., 2012). Soil pH is one of the most important predictors
of soil fertility, and developing a set of rootstocks well adapted to specific pH
profiles may improve orchard performance and open marginal land to apple
cultivation. The genetic inheritance of nutrient absorption and translocation to
different parts of the scion is quite complex, as there are many mechanisms
that contribute to a rootstock’s differential efficiency for a particular nutrient
(differential evapotranspiration, crop load, root morphology, water availability
and use efficiency, interaction with soil biota, active and passive transport,
vessel composition, and size etc.) and the genetic landscape described by
Fazio et al. (2013) shows a very dynamic multi-locus model intertwined with
between-nutrient to nutrient positive and negative correlations. It is possible to
identify rootstocks with high calcium effects on the scion; however, given the
complex genetic nature of each nutrient profile, the combinatorial probability
of developing a rootstock that features multiple desirable nutrient profiles
decreases with the addition of more nutrient requirements (Fazio et al., 2015a;
Reig et al., 2018). Therefore, nutrient-based selection of new apple rootstocks
may have to be limited to a few nutrients at a time.
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6.5 Branch angle and hormones

Within rootstock breeding populations, breeders have noticed the induction of
differences in scion branch angle as well as level of sylleptic branching. Fazio
and Robinson (2008a,b) reported certain Geneva® rootstocks induced flatter
scion branch angles than other Malling stocks. G.935 is particularly adept at
this in a nursery environment; it consistently promotes more feathers (sylleptic
branches) than other traditional rootstocks. More recently, Lordan et al. (2017)
showed that certain Geneva® rootstocks (e.g. G.11 and G.41) had higher levels
of root-supplied cytokinins and abscisic acid than other Malling stocks (Lordan
etal., 2017). This hormone profile was somewhat associated with flatter branch
angles. Flatter branch angle also is associated with the potential for more
flowers (Lauri and Lespinasse, 2001). This trait is potentially quite valuable in
high-density orchard production systems, since trees with flat branch angles
require less branch manipulation to control tree vigor.

7 Rootstock tolerance to abiotic and biotic stresses
7.1 Cold hardiness and lack of winter chilling

In northern climates, fall, mid-winter, and early spring cold temperatures are a
serious risk and limitation to apple tree survival (Moran et al., 2018). In warmer
climates, the lack of winter cold (sufficient to complete the endodormancy to
ecodormancy transition) is also a limitation to uniform bud burst in the spring.
Rootstocks can affect both cold hardiness and the chilling requirement for bud
burst in the spring.

When fully cold-acclimated, apple flower buds can withstand temperatures
of =30°C; however, roots can only withstand temperatures of —10°C. Sail
buffering capacity for cold winter temperatures and snow cover usually protect
roots from the temperatures below —10°C. However, if there is little snow
cover and there are prolonged air temperatures below —30°C, then damaging
soil temperatures below —10°C can occur in the root zone. A second type of
rootstock damage during winter can affect the rootstock shank (the trunk-like
portion of the root system below the graft union). If cold winter temperatures
occur with no snow cover, the part of the rootstock that is exposed above
ground and the part just below the soil surface can be damaged. If the entire
cambium is killed in this zone just above and below the soil line, the tree will die
in the spring about blossom time or during mid-summer when temperatures
get hot (Embree and McRae, 1991; Prive et al., 2001).

The hardiness of the rootstock shank varies considerably among
rootstocks. Differential tolerance to cold temperatures has been studied
and certain Malling stocks such as M.7 are quite sensitive to winter damage
at moderately cold temperatures of —=20°C. In 1990, Quamme classified the
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rootstocks available at the time for winter hardiness. He classified M.7 as very
tender, M.2, M.4, M.9, MM.106, and P.16 as tender, M.26, MM.111, MM.104, P.1,
and J.9 as moderately hardy and Antonovka seedling, A.2, Beautiful Arcade,
0.3, 0.8, B.9, P2, P22, and P.18 as hardy (Quamme, 1990; Quamme et al.,
1997). Under severe climatic conditions in Poland, tree mortality was greater on
M.9 than on M.26 or B.9 (Czynczyk and Zagaja, 1984). Following the mid-winter
cold event of 2004, Robinson et al. (2006) found tree survival with ‘Honeycrisp’
and ‘MclIntosh’ as the scions was greatest (~90%) for O.3, V.1, V.3, G.16, G.30,
and Mark. B.118, M.9T337, B.9, M.9 Nic 29, Supporter 4, M.26, and MM.111
had only 50% survival, while M.7 and MM.106 had very poor survival. Moran
etal.(2011a) froze non-grafted rootstocks and found that G.41, G.11, G.30, B.9,
P.2, and M.26 had similar hardiness, whereas G.935 had greater root hardiness
than M.26 (Moran et al., 2011a,b). More recently, Moran et al. (2018) found that
the Geneva® and Vineland series rootstocks exhibited a high degree of winter
hardiness in January, but that some were more tender in the fall (October) or in
the spring (April). G.30 was not hardy below —15°C in October or in April, while
CG.4013 was not hardy below =15°C in the fall and CG.5257 was not hardy
below —=15°C in April. However, in November or in March, they had hardiness
similar to mid-winter levels.

On the other extreme of low winter temperatures is the situation in some
apple-growing regions of the world of too little winter cold to satisfy the
endodormancy chilling requirement. Without adequate chilling, bud burst of
the scion in the spring is delayed and variable, with a high percentage of buds
failing to grow and subsequently dying (Midgley and Lotze, 2011; Rufato et al.,
2010). Rootstocks can affect the percentage of buds on the scion that grow in
spring following insufficient chilling. Recently, researchers in Brazil found that
G.213 rootstock had a greater percentage of buds that grew in the spring after
mild winters compared to M.9 or Marubakaido rootstocks. The same research
revealed that other Geneva® rootstocks, such as G.210 or G.814, also may have
a positive effect of bud development in climates with too little winter chilling
(Macedo et al., 2018). Preliminary studies indicate that these rootstocks have
higher levels of root-supplied cytokinins which may stimulate bud growth of
the scion. Experiments conducted in Geneva, New York, that subjected 'Gala’
budded on similar rootstocks found that budbreak occurred after accumulation
of 550 chilling hours, about 150 less than the standard requirement for ‘Gala.’

7.2 Drought tolerance and WUE

Apple tree WUE is a complex trait defined by the amount of photosynthesized
carbon per unit of water transpired, and is commonly measured seasonally
(units of seasonal dry-matter growth/units of water) or by measuring CO,,
O,, and H,O flux of tree canopies during short periods (Glenn, 2014). WUE
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in combination with phytohormones and root morphology are thought to be
associated with drought tolerance in apples (Tworkoski et al., 2016; Zhang
et al., 2014). Phenotypic diversity for WUE physiological and morphological
components were found in domesticated apple and related wild species
(Bassett et al., 2011), and several genes responding to water deficit have been
described in apple roots (Bassett et al., 2014). While WUE may be related to
tolerance to drought stress, the effective measure of tolerance to drought
stress should be the maintenance of productivity and marketable fruit quality
after the occurrence of stress (Atkinson et al., 1997). This is a difficult parameter
to measure, because beyond the effect of apple rootstocks, soil conditions,
scion variety, crop load, and other physiological variables all contribute to that
parameter (Atkinson et al., 2000; Ebel et al., 2001; Lo Bianco et al., 2012).

7.3 Fire blight

One of the most serious risks to orchards on susceptible rootstocks is the
bacterial disease fire blight. Although fire blight infects blossoms through the
nectary in open flowers, it can travel in the plant through the xylem and then
infect the cambium of the rootstock. If the rootstock is sensitive to fire blight,
the cambium connecting the top of the tree and the root system is killed and
the tree collapses a few months later or the next year (Norelli et al., 2001).
Some of the Malling semi-dwarfing rootstocks, such as M.7 and MM.111, are
partially resistant and thus there was little tree death in the era when they
were the predominant rootstocks. However, M.9 and M.26 are extremely
susceptible, and with the increased use of M.9 since the late 1990s, there have
been numerous fire blight epidemics that have killed millions of trees and have
cost apple growers millions of dollars in losses (Aldwinckle et al., 2004; Russo
et al., 2007). A recent (2018) epidemic in Washington (USA) caused the death
of an estimated 10% of the trees. Because of this risk, the primary objective of
the Geneva rootstock breeding program was to develop fire blight-resistant
rootstocks. If the rootstock is resistant, some flowers and then branches in the
scion may become infected, but they can be removed by pruning and the tree
will survive. The Geneva rootstock program has now released 14 fire blight-
resistant rootstocks. The new rootstocks from New Zealand (IFO series) also are
reported to be resistant.

The basis of the fire blight resistance used in the Geneva breeding
program was the rootstock ‘Robusta 5, which is a descendant of an Asiatic crab
apple species Malus X robusta. The Geneva progeny of ‘Robusta 5’ have broad
resistance to fire blight strains, but there exists some variability in resistance to
all known strains (Fazio et al., 2008). G.41 has some of the strongest resistance,
while G.935 has shown some susceptibility to one strain. Nevertheless, they all
have provided growers with a level of protection to the risk of tree death due
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to fire blight. Genetic inheritance of the 'Robusta 5'-type of resistance has been
described as having a strain-specific component on chromosome 3 identified
as a gene belonging to the NBS-LRR class of resistance genes (Broggini et al.,
2014a,b; Fahrentrapp et al.,, 2013; Kost et al., 2015). Other minor QTLs on
linkage groups 5, 7, 11, and 14, which do not seem to be strain-specific, were
detected in a non-rootstock population (‘ldared’ x ‘Robusta 5’) (Wohner et al.,
2014). Another non-strain-specific locus was discovered on linkage group 7 in
a rootstock population derived from a cross between ‘Ottawa 3’ and ‘Robusta
5' (Gardiner et al., 2012). Cis-genic approaches with the LGO3 gene proved
only partially successful, suggesting a more complex pathway of resistance
than just one gene recognition of the pathogen (Kost et al., 2015). There is
some evidence of graft transmissible benefits conferred to the grafted scion
from fire blight-resistant rootstocks (Jensen et al., 2003, 2011, 2012), including
reports by large-scale apple growers that they see less mortality and incidence
of strikes when a resistant rootstock is used.

A unique situation was discovered with B.9 rootstocks. It was shown to be
susceptible when inoculated with the bacteria, but when used as a rootstock
and the scion was inoculated, it exhibited good field-level resistance (LoGiudice
et al., 2006; Russo et al., 2008a,b).

7.4 Apple replant disease (ARD)

When apple trees are replanted in the same orchard in which apples and pears
were planted previously, the new trees often are stunted and do not grow well.
This problem has been named apple replant disease (ARD) and is caused by
a complex of several microorganisms which thrive on the roots of the previous
apple trees in the soil where the trees grew. Mazzola (1998) has reported that
the most important pathogens associated with the disease include Phythium,
Phytophthora spp., Rhizoctonia solani, and Cylindrocarpon spp., as well as the
root lesion nematode (Pratylenchus penetrans) and bacteria (Mazzola, 1998).
Research trials and grower observation indicate that M.26 is very sensitive to
ARD (Robinson, 2011). In virgin soils, M.26 produces a larger tree than M.9,
but in replant soils it often is similar in size or smaller than M.9. All rootstocks
exhibit less vigorous growth on replant soils than virgin soils. This has resulted
in the use of soil fumigation to kill pathogenic microorganisms prior to planting
(Peryea and Covey, 1989; Yao et al., 2006), which sometimes (depending on
soil type) is not effective.

Beginning in 2000, Merwin and students evaluated Geneva® rootstocks
for replant disease tolerance and found that G.65, CG.6210, and G.30 show
greater tolerance to the disease than Malling stocks (Isutsa and Merwin, 2000).
Rumberger et al. (2004) found that trees on M.7, M.26, and G.16 remained
smaller when growing in the previous tree rows compared with previous
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grass lanes, whereas the growth of trees on G.210 and G.30 planted in the
two locations was similar. Leinfelder and Merwin (2006) suggested that using
G.30 and G.210 rootstocks and planting in the previous grass lanes instead of
the old rows may be an effective strategy against ARD. Based on field trials,
Robinson et al. (2006) found that G.935 and G.202 had good tolerance to ARD.
In a replant study in Washington, Mazzola et al. (2009b) found that G.11 and
G.30 were more tolerant to lesion nematode than M.7, M.9, M.26, MM.106,
and MM.111 (Mazzola et al., 2009a,b). Trees on M.26, MM.106, and MM.111
were more susceptible to Pythium spp. than trees on B.9 and rootstocks
in the Geneva® series. Auvil et al. (2011) also reported that trees on several
Geneva® rootstocks in several Washington locations outperformed the industry
standards (B.9, M.9, and M.26) on replant sites (Auvil et al., 2011). In replant
trials in North Carolina (USA), trees on G.30 and G.210 performed better in
replant soils than trees on M.26 and M.7 (Parker et al., 2014).

The mechanism of ARD tolerance of Geneva® rootstocks is not clear. It is
possible that the early screening for resistance to Phytophthora root rot fungi
also co-screened for tolerance to other soil microorganisms. It is also possible
that the root systems of the tolerant Geneva® rootstocks simply have a faster
turnover rate and can essentially outgrow the pathogens (Atucha et al., 2013).
What is remarkable is that the microbial community in the rhizosphere of
these new rootstocks is drastically changed compared to the Malling stocks
(Rumberger et al., 2007), possibly by deposition of specific exudates (Leisso
et al, 2017, 2018). Regardless of the mechanism, this tolerance to ARD
for replanting apple orchards on previous orchard land is becoming more
important as soil fumigation options become more limited. In some parts of the
United States and the world, soil fumigation is no longer an available option.

7.5 Viruses

Some plant viruses are lethal to many apple varieties, but other viruses are not
lethal to most apple varieties and rootstocks. Viruses that can exist in the plant
and cause few symptoms are termed latent viruses, which can be spread to
new trees by grafting infected wood on clean rootstocks or by grafting clean
wood on infected rootstocks. There are five main latent viruses: apple stem
pitting virus (ASPV), apple stem grooving virus (ASGV), chlorotic leaf spot
virus (ACLSV), apple mosaic virus (ApMV) and tomato ringspot virus (ToRSV)
(Fuchs et al., 2018). Over time, all common commercial rootstocks from the
Malling series became infected with one or more latent viruses. During the
1950s and 1960s, the Malling stocks were heat-treated to eliminate known
viruses, and were given the designation East Malling-Long Ashton (EMLA).
The clean versions of the Malling stocks were slightly more vigorous than the
infected versions. In addition to the effort at the East Malling and Long Ashton

Published by Burleigh Dodds Science Publishing Limited, 2019.



24 Advances in fruit tree rootstocks

research stations, the Dutch organization NAKB and the French organization
CTIFL produced their own versions of clean M.9. The Dutch clean M.9 is
referred as M.9T337 and the French version is referred as M.9Pajam1 and
Pajam2.

A specific case of lethality was with MM.106 rootstock. When ‘Delicious’
scions were grafted on MM.106 and the trees were later infected with ToORSV
through nematode vectors, the trees developed a brown (dead) line of cells
at the graft union and the trees died (Tuttle and Gotlieb, 1985). More recently,
several of the Geneva® rootstocks have shown susceptibility to one or more
of the latent viruses. G.16 was very sensitive to the three most common latent
viruses and required the use of virus-free budwood; otherwise, the trees die
in the nursery or in the first year in the orchard. G.814 and G.935 have shown
lesser susceptibility to latent viruses. The case of G.935 is still unclear, since it
seems tolerant of individual viruses, but possibly combinations of viruses result
in poor growth although the trees do not die. Nevertheless, the solution to
these sensitivities is the use of virus-free bud wood since the common latent
viruses are only transmitted by grafting.

Some apple-growing regions, such as the European Union, have very
good virus elimination programs and require both rootstocks and scion wood
to be virus-free. However, other areas, such as the United States, have allowed
virus elimination programs to lapse due to limited government funding, and
currently there are widespread latent virus infections in New York orchards
(Fuchs et al., 2018). It is imperative that apple regions worldwide strengthen
their virus elimination programs.

7.6 Tree anchorage and graft union strength

In the era when trees were expected to be freestanding (i.e., before trees were
supported by posts or trellises), the anchorage of a rootstock was an important
characteristic. Most of the semi-dwarfing rootstocks from around the world are
freestanding, but some semi-dwarfing and the dwarfing rootstocks are not. M.7
is a semi-dwarfing rootstock that is freestanding in most cases, but with heavy
rains and winds it can lean. In many orchards with M.7, about 30% of the trees
exhibit significant leaning. In the previous era of semi-dwarfing rootstocks,
many orchards with M.7 required tree support. However, with the adoption
of the dwarfing rootstocks M.9 and M.26, tree support is required because
the rootstock does not provide sufficient anchorage to support the tree with
a heavy crop load. Support is also required because dwarfing rootstocks are
much more precocious, resulting in a heavy crop on a young tree with small
diameter limbs and trunk which can break down the canopy without support.
Thus, in the dwarf tree era and high planting densities, rootstock anchorage has
become an unimportant rootstock characteristic.
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Another tree structural issue is rootstock-scion graft union strength, which
has become more important with the adoption of dwarfing rootstocks. Both
M.9 and M.26 have weak graft unions with some scion cultivars (e.g. ‘Gala’),
which requires good trellis support. Geneva® 30 also has exhibited poor
graft union strength with ‘Gala,’ as high winds from a 1990 hurricane caused
the breakage of mature trees at the graft union. Recent nursery and field
observations indicate that unions of some newer cultivars, such as ‘Cripps Pink'’
and ‘Scilate’ on G.41, are also brittle and trees break in wind storms, as well
as when digging trees in the nursery or planting trees in the orchard. Since
tree breakage can have significant economic consequences for nurserymen
and orchardists, researchers have evaluated methods for determining union
strength and flexibility (Adams et al., 2017). The amount of force required to
break graft unions currently is used in the Geneva breeding program to classify
graft union strength of rootstocks. Rehkugler et al. (1979) found that 18-year-
old ‘Golden Delicious’ on M.9 could withstand only one-third of the force
required to cause breakage on vigorous rootstocks (Rehkugler et al., 1979).
Robinson et al. (2003) found the graft union of ‘Gala’/G.30 was more brittle
than ‘Gala'/M.26, but the strength of the ‘Gala’/G.30 graft union increased with
tree age (Robinson et al., 2003). Adams et al. (2017) found that 'Scilate’/G.41
graft unions were weaker than ‘Scilate’/M.9 graft unions, and that grafting
method did not improve the graft union strength. Application of plant growth
regulators to graft unions in the nursery did improve graft union strength: foliar
applications of prohexadione-calcium and benzyladenine applied to the union
in latex paint increased the flexural strength per scion cross-sectional area and
the flexibility of the union. To avoid tree breakage problems, support should
be provided in the nursery, as well as in the orchard so branches can be tied to
multiple wires to prevent the twisting of trees in the wind.

8 Trends in apple (and other tree fruit) rootstock use

Over the last 100 years, total worldwide apple rootstock production has
increased many fold. This is due to increased acreage worldwide, but also due
to the tenfold increase in planting density as the world's apple growers moved
from low-density orchards to high-density orchards. Our estimate of worldwide
production of apple rootstocks is two million plants in 1950, but in 2019 we
estimate there are more than 120 million rootstocks produced worldwide.

The apple-producing world before 1950 primarily used seedling
rootstocks. Excluding China, starting in the mid-twentieth century a slow
transition from seedling rootstocks to semi-dwarfing Malling rootstocks
(MM.106, MM.111, and M.7) began and accelerated in the 1960s and 1970s
so that by 1980, semi-dwarfing rootstocks accounted for an estimated 80%
of all apple rootstocks in the world. However, starting in the 1970s, the use
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of M.9 increased from less than 10% of all rootstocks to almost 70% of all
rootstocks by 2000, while the use of semi-dwarfing rootstocks declined rapidly
during the 1990s. As M.9 gained in popularity, M.26 also grew to account for
about 20% of rootstocks produced by the year 2000. Since 2000, M.9 has
dominated the worldwide production of rootstocks, but in some countries,
B.9 has increased rapidly and accounts for 20% of all rootstocks produced
today. Since 2006, the production of the Geneva® rootstock series has
increased rapidly in the United States and, in 2019, accounts for about 40%
of all rootstocks produced. On a worldwide scale, the Geneva® rootstocks
account for about 8% of all rootstocks. It is expected that their production will
rise to account for 50% of worldwide apple rootstock production (excluding
China) in the next 10 years.

Apple rootstock usage in China has followed a different path. Apple
production in China before 1980 was small; however, due to government
promotion of growing apples, production exploded in the late 1980s and
1990s. This resulted in China becoming the largest apple-producing country
in the world by 2000, with currently five times the production of the second
largest producer, the United States. Almost all Chinese apple production
is based on vigorous and semi-vigorous rootstocks of Malus prunifolia, M.
baccata, M. hupehensis, M. micromalus, and M. seversei. Although China has
a vast orchard area, the planting densities are moderate, thus resulting in an
estimated annual rootstock production of 30 million plants, which is similar to
the European apple rootstock production.

This historical evolution of apple production tied to rootstock innovations
presents a template for the likely evolution of other temperate zone tree fruit
production systems as well. Clearly, sweet cherry production has undergone a
similar, even more rapid evolution and expansion since the first development
of vigor-limiting, precocious rootstocks (primarily the Gisela® series) in the
1980s and 1990s. Significant advances in genetic development and selection
of vigor-limiting peach and pear rootstocks also have been made since the turn
of the century, with the subsequent research into their utilization for production
system innovations now in their early stages.

9 Future trends in apple rootstocks

In the previous century, the primary criteria in choice of apple rootstock has
been “will it survive in my climate, is it the right vigor and is it available?” Cold
damage and fire blight have been the two primary and economically important
causes of tree death in North America. In addition, Phytophthora root rots and
waterlogging have also caused tree death. Thus, the rootstock decision in
the past was usually quite simple, with only one or two choices available to
growers. However, with the proliferation of improved apple rootstocks available
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around the world, there is now a dizzying array of choices for apple growers.
The Geneva breeding program alone has released 14 apple rootstocks and is
poised to release four more in the next few years. Even so, availability of new
rootstocks is still a problem for some growing regions.

Researchers are attempting to evaluate new rootstocks in different
locations and provide advice to apple growers regarding which rootstocks
will perform best in each region. With so many rootstock choices, Fazio
has suggested the term ‘designer rootstocks’ to indicate the possibility of
choosing a rootstock suited for the specific climate, soil, cultivar, and planting
system a grower chooses. Robinson further defined the four variables that
need to be determined specifically for each orchard before choosing a
rootstock: (1) vigor of the variety, (2) vigor imparted by the climate, (3) vigor
imparted by the soil, and (4) the space allocated to each tree. Each of these
should be considered as pieces of a puzzle specific to each orchard or areas
in an orchard for selecting the rootstock. Robinson has further suggested
that a rootstock in a modern orchard should be able to grow well enough to
fill the space allocated to the tree in 2 years and begin production in either
the first or second year, depending on the quality of available nursery trees.
If rootstock vigor combined with scion, climate, and soil vigor do not result
in sufficient growth to fill the space in 2 years, then substantial economic
penalties in lost yield accrue to the grower. When rootstock choices were
relatively limited, growers often planted an available rootstock that was
not well matched with all of the vigor factors (including tree spacing),
resulting in trees that took 5-8 years to fill their allotted space or that grew
too vigorously for the allotted space and then were difficult to manage in
later years. Robinson has estimated that with high-priced varieties, the lost
yield when trees fail to fill their space by the end of the second or third year
can cost up to $250000/ha in lost yield over the first 8 years of orchard life.
This economic reality often is not appreciated by growers who never see
the un-realized income from lower-than-potential yields due to the wrong
rootstock choice.

The introduction of the 'Honeycrisp’ apple in the United States in the
mid-1990s brought new challenges to growers for rootstock selection. It is a
weak-growing cultivar that often fails to fill the orchard space allocated to the
tree in 2 years when grafted to dwarfing rootstocks. However, due to its high
market price, ‘Honeycrisp’ has been very profitable for growers even though
it often fails to achieve this goal. In addition, its susceptibility to the Ca-related
disorder, bitter pit, has resulted in the quest for rootstocks that not only have
the appropriate vigor level but also have a genetically programmed specific
mineral nutrient profile for higher Ca uptake and a better translocated K/
Ca ratio in the fruit to reduce bitter pit. A national project involving a group
of US researchers from the NC140 rootstock evaluation group has begun a
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5-year project to speed the discovery of such rootstocks that are more ideally
matched to specific varieties in locations where apples are produced. Similarly,
this effort is also examining potential rootstocks for new areas of production
that historically have been limited by high soil pH and/or high salt tolerance
and drought tolerance. The project intends to develop an online decision aid
tool to help growers choose the right rootstock for their specific soil, climate,
variety, and spacing.

The future of rootstock improvement will assuredly lead to greater
combinations of resistance/tolerance to biotic and abiotic stresses and positive
horticultural traits. In the short term, efforts to characterize existing rootstocks
or existing breeding populations for all of the desirable rootstock traits can be
done relatively rapidly (10 years). However, to breed new ‘designer’ rootstocks
for specific combinations of important traits is a much longer process (30 years).
To speed up progress, marker-assisted breeding will improve the efficiency of
selecting rootstocks with desirable traits at an early stage, potentially reducing
the time to develop a new rootstock to only 13 years (2-3 years to select for
one or more desirable traits and 10 years for propagation and field evaluation).
Another possible way to accelerate rootstock development is to use genetic
engineering through cis-gene transfer of specific apple genes through CRISPR-
Cas9 technology. By this method, a specific gene could be inserted to an elite
rootstock that already has many positive attributes. This may reduce the time to
develop a new rootstock to only 11 years (1 year for gene transfer and 10 years
for propagation and field testing).

Limitations to rapidly introducing a new rootstock worldwide include
virus-certification, bulk propagation, and the need by growers and researchers
in each production region worldwide to establish objective rootstock trials
to confirm the performance of a rootstock in a given climate with the target
varieties. Most growers are hesitant to plant a new rootstock that has not been
proven in their area. For growers, a new orchard is at least a 20-year investment
and if the choice of rootstock (or variety) does not result in a productive orchard
of marketable fruit for 20 years, there can be large economic penalties.

There are few tree fruit rootstock breeding programs in the world. Some
focus on only a few horticultural traits, such as improved rooting or cold
hardiness. However, the world apple community needs rootstock breeding
programs to focus on multiple resistances to biotic and abiotic stresses,
in addition to superior horticultural characteristics including high yield of
premium-quality fruit. Such broad breeding objectives require a large team
and many cooperators who will evaluate the rootstocks in different climates
and soils. We predict that rootstock breeding programs with the vision of
developing rootstocks with multiple resistances and superior horticultural
performance will produce an increasing array of new valuable rootstocks over
the next 30 years.
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