
# Achieving sustainable cultivation of temperate zone tree fruits and berries

Volume 1: Physiology, genetics and cultivation

Edited by Professor Gregory A. Lang, Michigan State University, USA





# Advances in the development and utilization of fruit tree rootstocks: a case study for apple

Gennaro Fazio, USDA-ARS Plant Genetics Resources Unit, USA; and Terence Robinson, Cornell University, USA

- 1 What are rootstocks?
- 2 History and modern use of clonal rootstocks in apple
- 3 Rootstock improvement efforts
- 4 Rootstock propagation
- 5 Rootstock evaluation
- 6 Rootstock effects on scion traits and mechanisms
- 7 Rootstock tolerance to abiotic and biotic stresses
- 8 Trends in apple (and other tree fruit) rootstock use
- 9 Future trends in apple rootstocks
- 10 References

#### 1 What are rootstocks?

All commercial temperate zone fruit trees are composed of an aerial 'scion' cultivar grafted or budded on another cultivar which serves as the support root system referred to as the 'rootstock.' The practice of budding or grafting desirable scion cultivars on rootstocks has been practiced for centuries due to the highly heterozygous nature of tree fruits (Tukey, 1978), most of which do not reproduce 'true to type' by seed. Thus, in general, the seed from a desirable fruit variety will not result in a tree which produces the same fruit characteristics as the parent. To overcome this problem, fruit growers learned many centuries ago that a desirable genotype could be propagated asexually by budding (a single bud) or grafting (a small section of shoot with several buds) onto other plants with roots (usually the same or a closely related species) and then allowing only the bud of the desirable cultivar to grow and develop into each tree's canopy, thus creating multiple trees of the desirable cultivar (Cummins, 1973; Larsen, 1976). For example, all of the 'Red Delicious' apple (Malus domestica) trees in the world originated from a single tree discovered

in Peru, Iowa, in the 1800s. Thereafter, buds from the original tree were budded onto other apple seedlings, and later interspecific hybrid clones, that serve as rootstocks to produce the millions of 'Delicious' trees that have been grown around the world from until the present day. Similarly, 'Montmorency' sour cherry (*Prunus cerasus*) is a 400+ year-old cultivar that originated in France, but comprises the majority of sour cherry production in the United States, where it is grown primarily on *Prunus mahaleb* seedling rootstocks. The general history of all major fruit cultivars, including subtropicals such as *Citrus* as well as temperate zone fruit and nut trees, is similarly based on the propagation of superior fruiting genotypes on different rootstock genotypes. Not only does this provide a way to reliably reproduce the superior traits of the scion, but also a way to adapt its production to different localized soils, climates, and production systems.

Historically, seedlings were used as rootstocks for deciduous fruit tree species such as apple, pear (Pyrus communis), peach (Prunus persica), tart and sweet (Prunus avium) cherry, apricot (Prunus armeniaca), and plum (Prunus domestica and Prunus salicina) (Sax, 1949). The classic way to produce a rootstock is to plant seeds and when the young seedling is 30-50 cm tall, bud or graft onto that seedling the desirable scion cultivar. However, with the exception of some peach and almond rootstocks, since each seedling rootstock is a unique genotype, there can be considerable variability in its own growth characteristics as well as the characteristics it may impart to the scion due to the heterozygosity of each fruit species, resulting in variability in tree performance in the orchard. Potential variations in seedling rootstocks include vegetative vigor, tree shape, and size, yield, precocity of fruit bearing, fruit size, and susceptibility to root diseases and abiotic stresses. Nevertheless, almost all commercial orchards used seedling rootstocks until the twentieth century. While this chapter focuses mostly on apple, it exemplifies the various inherent rootstock properties and rootstock-induced qualities on grafted scions that can be found in other temperate fruit rootstocks.

# 2 History and modern use of clonal rootstocks in apple

Several millennia ago (possibly by the fourth century AD), rootstocks that had unique desirable characteristics began to be selected and propagated asexually by rooted cuttings or via stoolbed or layerbed techniques (Tukey, 1964). One such apple rootstock named 'Paradise' was dwarfing. It was propagated vegetatively in Europe and used in home gardens for several centuries before the modern era of rootstock improvement (Lindley, 1828; Loudon, 1822). A number of other dwarfing apple rootstocks were in use and propagated clonally by the late nineteenth century, but duplication of names and confusion of rootstock identity hindered adaptation for commercial production. To solve

this problem, Hatton at East Malling Research Station (EMRS) in the United Kingdom (UK) began collecting and categorizing apple rootstocks from all over Europe. These were named using the letters EM (East Malling) and roman numerals I-IX (Hatton, 1917, 1919). Later, the EM designation was changed to simply M and the numbers from Roman to Arabic numbers. The series was expanded to 16 genotypes in 1914, and later additional rootstocks 17–24 were listed in 1924.

The most dwarfing rootstocks of the Malling series (M.8 and M.9) initially were considered too dwarfing for commercial orchards and more suitable for home gardens. However, from the semi-dwarfing Malling rootstock series (M.2, M.4, M.7, M.13 etc.), several were adopted by commercial apple growers in England and other European countries (Hatton, 1920). By the late 1950s, clonal rootstocks began to replace seedling rootstocks in most of Europe, North America, Australia, and New Zealand. This facilitated the development of planting systems at double or triple the planting density of trees on seedling rootstocks, which typically were planted at 150 trees/ha. At roughly the same time in the 1960s, Don Heinicke in the United States and Don McKenzie in New Zealand independently developed the central leader tree training system for use with semi-dwarfing clonal rootstocks (Heinicke, 1975; McKenzie, 1964, 1985). This planting system revolutionized apple growing and was adopted worldwide. Its primary advantage was earlier production because of greater precocity of the semi-dwarfing Malling rootstocks and greater cumulative production due to the higher planting density (Palmer et al., 1989; Sansavini et al., 1981; Sansavini and Musacchi, 2000).

The more dwarfing rootstocks of the Malling series, particularly M.9, began to be used in some German and Dutch orchards in the 1960s, leading to the development of the slender spindle tree form by Bob Wertheim in the late 1960s (Wertheim, 1978). These dwarf slender spindle trees were planted at 1500-2000 trees/ha. Initially, this concept was only accepted in Northern Europe where land for orchards was limited (Wertheim, 1981; Wertheim and Callesen, 2000). In areas of the world where land was more plentiful, most growers preferred to plant semi-dwarfing rootstocks on large land areas.

In France, a different tree form that could be used with semi-dwarfing or dwarfing clonal rootstocks, named the Vertical Axis, was developed by Jean Marie Lespinasse in the mid-1970s. Trees were planted at a density of 1000-1500 trees/ha. Although in France this tree form was developed mostly with M.9, growers in many other parts of the world mostly used semi-dwarfing clonal Malling rootstocks in the 1980s and 1990s (Barden, 1995; Crassweller and Smith, 2001).

In the late 1980s, many research and extension personnel around the world began to evaluate and promote higher tree densities on M.9 rootstock trained to various versions of the slender spindle tree form. However, growers

in most regions were hesitant to adopt M.9 rootstock. A notable exception was Northern Italy where Herman Oberhofer, an extension specialist, began to take groups of growers to Holland to observe high-density orchards on dwarfing rootstocks, and within 10 years the vast majority of Northern Italy apple farms had converted to slender spindle on M.9 rootstocks (Comai and Widmann, 1972).

Through the 1990s and 2000s, most other apple-growing areas of the world switched from clonal semi-dwarfing rootstocks to clonal dwarfing rootstocks (Hampson et al., 2002; Robinson et al., 1991a). This happened more rapidly in some countries than others. In some countries, an intermediate step was taken by using a semi-dwarfing rootstock with the scion grafted on M.9 as an interstock. These interstem trees were more dwarfing than those on semidwarfing rootstocks, but not as dwarfing as those directly on M.9 rootstock (Domoto, 1982; Ferree et al., 1982; Koike and Tsukahara, 1988; Lord, 1983). In almost all regions of the world that used interstem trees, these have now been replaced by fully dwarfing rootstocks. Currently, most areas of Europe, North and South America, and Australia, New Zealand, and South Korea, use dwarfing stocks and planting densities greater than 2000 trees/ha and some as high as 6000 trees/ha. However, in some areas of the world, particularly China, Japan, and India, adoption of dwarfing clonal rootstocks has been slow and growers continue to use seedling, or semi-dwarfing, rootstocks with limited use of interstem trees (Ma et al., 2013; Tamai et al., 2002, 2003).

## 3 Rootstock improvement efforts

After the initial effort to name and categorize European rootstocks in the early 1900s, Preston at EMRS conducted controlled crosses of rootstocks which resulted in the release of M.26 in 1959 and later M.27 in 1975 (Preston, 1967; Preston and Belcher, 1982). M.26 was a cross of M.16 and M.9 and found widespread acceptance around the world since it was slightly more vigorous than M.9, but less vigorous than M.7. M.27 has found only limited use because it is even more dwarfing than M.9 and often with reduced fruit size (Wertheim and Scholtens, 1994).

The introduction of Malling rootstocks to Australia and South Africa revealed an important weakness, their susceptibility to woolly apple aphid (*Eriosoma lanigerum*) (Dozier et al., 1974). These aphids colonize the tops of trees, but in areas with cold winters, they are killed and then re-colonize slowly the next year. However, in areas with mild or warm winters, they colonize the root system and then re-infest the aerial parts of the tree rapidly the next year. The need for woolly apple aphid-resistant rootstocks led to a joint breeding program between EMRS and the Merton Research Station in the UK. Crosses of Malling rootstocks with Northern Spy resulted in a new series of rootstocks, the

Malling-Merton (MM) series numbered from 101 to 114. All are semi-dwarfing. Of these, the most important were MM.104, MM.106 and MM.111 (Preston, 1966). They were adopted by growers in many apple regions in the world and were utilized in the Central Leader system at densities from 500 to 800 trees/ha. MM.106 is highly productive, but also highly susceptible to *Phytophthora* root rot, which limited its use in wet soils (Browne and Mircetich, 1993). MM.111 is less productive and slightly more vigorous than MM.106, but is very durable and tolerant to drought stress (Atkinson et al., 1997; Tworkoski et al., 2016).

The need for better rootstocks has prompted many institutions around the world to make crosses for breeding objectives that have varied by institution, and have been as simple as improved rooting in the propagation bed or as complex such as multiple resistances to rootstock biotic and abiotic stresses. Rootstock breeding programs have been conducted in Sweden (Alnarp 2), Poland (P series) (Czynczyk and Omiecinska, 1989), Germany (Supporter® and Pillnitz series) (Fisher, 1994), Czech Republic (JTE series) (Dvorak, 1983; Webster and Tobutt, 1994), Romania (Voinesti series) (Mazilu et al., 1999), Russia (Budagovsky series) (Kuldoshin and Sadowski, 1999; Webster and Tobutt, 1994), China (SM series) (Gao et al., 2011; Rong et al., 2011; Wan et al., 2011), Japan (Morioka series) (Bessho and Soejima, 1992; Tsuchiya, 1988), Canada (Ottawa, KSC, SJM and Vineland series) (Elfving et al., 1993; Embree, 1985; Khanizadeh et al., 2005; Spangelo et al., 1974), New Zealand (IFO series) (Bus et al., 2008), Michigan, USA (MAC series) (Carlson and Perry, 1986), and Geneva, New York, USA (Geneva® series) (Cummins and Aldwinckle, 1974; Fazio et al., 2015b). There are now more than 100 named rootstocks in the world (Table 1).

One of the more impactful breeding programs started in 1937 at the Michurinsk Research Station in Russia. The primary objective of this program was increased winter hardiness. They used Russian red leaf rootstock as their source of cold hardiness and M.8 as their source of dwarfing. They released Budagovsky 9 (B.9) in 1975 as an M.9-sized stock with greater cold hardiness than M.9 (Czynczyk, 1979). It has had a worldwide impact and has been planted widely in the United States and Northern Europe. Researchers in the United States (LoGiudice et al., 2006; Russo et al., 2008b) showed B.9 is also resistant to fire blight (caused by Erwinia amylovora). The nature of the resistance is unusual since the young plant is sensitive to fire blight, but with age the grafted tree shows field-level resistance. Other rootstocks which have had limited acceptance are B.491 and B.118. A fourth and more recent rootstock, B.10 (B.62-396) is rapidly gaining acceptance in the United States (Autio et al., 2017a,b). It is slightly more vigorous than M.9, but is highly productive like M.9 and shows fire blight tolerance similar to B.9. Several other selections from the Budagovsky breeding program have been evaluated in North America, but none has shown high productivity and dwarfing (Autio et al., 2017a,b).

Table 1 A partial listing of apple rootstocks worldwide with origin characteristic vigor parentage and tree size relative to inclustry standards

| Roostock | Туре       | Origin                     | Parentage                                       | Tree size   | References                            |
|----------|------------|----------------------------|-------------------------------------------------|-------------|---------------------------------------|
| B.54-118 | Semi-dwarf | Michurinsk College, Russia | Unknown                                         | ı           | Hulko et al. (1999), Kuldoshin (1999) |
| B.9      | Dwarf      | Michurinsk College, Russia | Unknown                                         | M.9         | Hulko et al. (1999), Kuldoshin (1999) |
| 3.10     | Dwarf      | Michurinsk College, Russia | Unknown                                         | M.9         | Hulko et al. (1999), Kuldoshin (1999) |
| 3.118    | Semi-Dwarf | Michurinsk College, Russia | Unknown                                         | M.9         | Hulko et al. (1999), Kuldoshin (1999) |
| B.490    | Dwarf      | Michurinsk College, Russia | Unknown                                         | M.9         | Hulko et al. (1999), Kuldoshin (1999) |
| 3.491    | Dwarf      | Michurinsk College, Russia | Unknown                                         | M.9         | Hulko et al. (1999), Kuldoshin (1999) |
| CG.2022  | Dwarf      | Geneva, USA                | Malling 9 × Ottawa 11                           | M.27        | Russo et al. (2007)                   |
| CG.2034  | Dwarf      | Geneva, USA                | Dolgo crab × Malling 27                         | M.27        | G. Fazio, pers. comm.                 |
| CG.4003  | Dwarf      | Geneva, USA                | (Antonovka Kamienaja ×<br>Ottawa 3) × Robusta 5 | M.26        | Norelli et al. (2003)                 |
| CG.4004  | Dwarf      | Geneva, USA                | 722506-004 × OP                                 | M.26        | G. Fazio, pers. comm.                 |
| CG.5257  | Dwarf      | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.26        | G. Fazio, pers. comm.                 |
| CG.6006  | Semi-dwarf | Geneva, USA                | PK-14 × Robusta 5                               | M.26 to M.7 | G. Fazio, pers. comm.                 |
| CG.8189  | Semi-dwarf | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.7-MM.106  | G. Fazio, pers. comm.                 |
| 3.202    | Dwarf      | Geneva, USA                | M.27 × Robusta 5                                | M.26        | Norelli et al. (2003)                 |
| G.210    | Semi-dwarf | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.7         | Norelli et al. (2003)                 |
| G.214    | Dwarf      | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.26        | Norelli et al. (2003)                 |
| G.222    | Dwarf      | Geneva, USA                | M.27 × Robusta 5                                | M.26        | G. Fazio, pers. comm.                 |
| G.814    | Dwarf      | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.7         | Norelli et al. (2003)                 |
| G.890    | Semi-Dwarf | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.26 to M.7 | Norelli et al. (2003)                 |
| G.935    | Dwarf      | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.26 to M.7 | Norelli et al. (2003)                 |
| G.969    | Semi-dwarf | Geneva, USA                | Ottawa 3 × Robusta 5                            | M.7         | Norelli et al. (2003)                 |
| IM 1     | المريبين ا |                            |                                                 | 0 2         | C. E                                  |

| JM.2       | Dwarf      | Morioka, Japan                                   | Unknown                    | M.7        | Norelli et al. (2003)                                                                             |
|------------|------------|--------------------------------------------------|----------------------------|------------|---------------------------------------------------------------------------------------------------|
| JM.4       | Dwarf      | Morioka, Japan                                   | M. prunifolia Seishi × M.9 | M.26       | Norelli et al. (2003)                                                                             |
| JM.10      | Dwarf      | Morioka, Japan                                   | M. prunifolia Seishi × M.9 | M.9        | Norelli et al. (2003)                                                                             |
| JTE-B      | Dwarf      | Czech Republic                                   | Unknown                    | M.7        | Norelli et al. (2003)                                                                             |
| JTE-C      | Dwarf      | Czech Republic                                   | Unknown                    | M.7        | Norelli et al. (2003)                                                                             |
| Mark       | Dwarf      | Michigan, USA                                    | M.9 open pollinated        | M.9        | Carlson and Perry (1986)                                                                          |
| M.26       | Dwarf      | HRI-East Malling, UK                             | M.16 × M.9                 | M.26       | Preston (1974), Rogers and Beakbane (1957), Proctor et al. (1974)                                 |
| M.27       | Dwarf      | HRI-East Malling, UK                             | M.13 × M.9                 | M.27       | Preston (1974), Barritt et al. (1995)                                                             |
| M.7        | Semi-dwarf | East Malling, UK                                 | Unknown                    | M.7        | Hatton (1917), Preston (1967)                                                                     |
| M.9        | Dwarf      | Reselected at HRI-East<br>Malling, UK            | Unknown                    | M.9        | Hatton (1917), Van Oosten (1977), Van<br>Oosten and Groene (1984), Webster and<br>Hollands (1999) |
| MM.106     | Semi-dwarf | East Malling, Uk                                 | Northern Spy × M.1         | MM.106     | Preston (1955, 1966)                                                                              |
| P.1        | Semi-dwarf | Skierniewice, Poland                             | M.4 × Antonovka            | M.7        | Czynczyk and Omiecinska (1989)                                                                    |
| P.2        | Dwarf      | Skierniewice, Poland                             | M.9 × Antonovka            | M.9        | Czynczyk and Omiecinska (1989)                                                                    |
| P.16       | Dwarf      | Skierniewice, Poland                             | Longfield × M.11           | M.9        | Czynczyk and Omiecinska (1989)                                                                    |
| P.22       | Dwarf      | Skierniewice, Poland                             | M.9 × Antonovka            | M.27       | Czynczyk and Omiecinska (1989)                                                                    |
| PiAu.51-11 | Dwarf      | Pillnitz, Germany                                | M 4 open pollinated        | M.26       | Norelli et al. (2003)                                                                             |
| PiAu.51-4  | Semi-dwarf | Pillnitz, Germany                                | M 4 open pollinated        | M.26       | Norelli et al. (2003)                                                                             |
| PiAu.56-83 | Semi-dwarf | Pillnitz, Germany                                | M 11 open pollinated       | M.9        | Norelli et al. (2003)                                                                             |
| V.1        | Dwarf      | Vineland, Ontario, Canada                        | "Kerr" open pollinated     | M.9-M.26   | Elfving et al. (1993), Hampson et al. (2012)                                                      |
| V.2        | Semi-dwarf | Vineland, Ontario, Canada                        | "Kerr" open pollinated     | M.7        | Elfving et al. (1993), Hampson et al. (2012)                                                      |
| V.3        | Dwarf      | Vineland, Ontario, Canada "Kerr" open pollinated | "Kerr" open pollinated     | M.27-M.9   | Elfving et al. (1993), Hampson et al. (2012)                                                      |
| V.4        | Semi-dwarf | Vineland, Ontario, Canada "Kerr" open pollinated | "Kerr" open pollinated     | M.7-MM.106 | Elfving et al. (1993), Hampson et al. (2012)                                                      |
| V.7        | Semi-dwarf | Vineland, Ontario, Canada                        | "Kerr" open pollinated     | M.7        | Elfving et al. (1993), Hampson et al. (2012)                                                      |
|            |            |                                                  |                            |            |                                                                                                   |

Another breeding program that has had significant impact has been the German program at Pillnitz. Fisher has released four rootstocks, the Supporter® series 1-4. Supporter® 4 is similar to M.26, being highly productive, and has been planted to some extent in several European countries (Fischer et al., 1997). It has had little importance outside of Europe because it is susceptible to fire blight and replant disease (Autio et al., 2013; Auvil et al., 2011).

The breeding program in Poland has released a number of cold-hardy rootstocks which have been used in Poland and to a limited extent in other European countries. The most important have been P.22 (very dwarfing, similar to M.27) and P.16 (similar to M.9, but more winter hardy). While these have been tested worldwide, their implementation has been somewhat slow because they did not offer significant improvements over the current standard rootstocks (Marini et al., 2006).

Mark rootstock, bred by Robert Carlson and released by Michigan State University in the early 1980s, had its most significant impact in the United States from 1985 to 1995. Mark is slightly more vigorous than M.9 and is winter hardy and very productive. However, as the trees aged, a proliferation of nonorganized tissue developed just below the soil line, leading to weak tree growth and small fruit size (Travis and Rytter, 1995; Travis et al., 1999; Warmund et al., 1993).

Of the four Canadian breeding programs, Ottawa 3 has had the most impact. It is very winter hardy and very productive, with vigor similar to M.9. It was planted to a limited extent in the late 1980s and early 1990s, but problems with transplant losses, virus sensitivity, and difficulty in propagation limited its use (Ferree, 1992; Rioux et al., 1984; Spangelo et al., 1974). Currently, five rootstocks from Vineland, Ontario, are under development and may have importance in the future (Hampson, 2012; Hampson et al., 2012). The KSC and SJM rootstocks have not had commercial importance.

Another impactful rootstock breeding program has been at the Geneva campus of Cornell University. The program was started by James Cummins in 1969 and was joined by Herb Aldwinckle in 1971 to develop a series of rootstocks that not only conferred high productivity and dwarfing, but also resistances to the most important rootstock diseases and biotic stresses (Aldwinckle et al., 1972; Cummins and Aldwinckle, 1974). They extensively used 'Robusta 5' rootstock as a parent since it is resistant to fire blight and other diseases (Gardner et al., 1980). Other parents were either M.9, M.26, M.27, or Ottawa 3. They screened all progeny for resistance to fire blight and tolerance/resistance to crown and root rot caused by *Phytophthora cactorum*. They also screened for woolly apple aphid resistance and selected for low number of root suckers or burr-knots (Cummins et al., 1983). These were then selected for high productivity, dwarfing, and cold hardiness. Interestingly, some of the Geneva® rootstocks also have shown tolerance/resistance to apple replant

disease (ARD), although that was not a breeding objective. The program was converted to a joint breeding venture between Cornell University (Geneva) and the USDA-ARS in 1998, and it continues to make crosses and release new rootstocks under the leadership of Gennaro Fazio. The breeding objectives have evolved through time. While these include previous objectives of fire blight resistance, crown rot resistance, cold hardiness, low root suckers, and low burr-knots, newer objectives include replant disease tolerance, specific nutrient uptake (especially Ca), low chill induction requirement, drought tolerance, water-use efficiency (WUE), tolerance to sodic soils, tolerance to particular soil pH levels (high and low), and graft union strength (Fazio et al., 2015b). As of 2019, 14 rootstocks have been released by the Geneva® program and several have achieved importance in the United States and some other parts of the world. Those that are being produced in large volumes (>500,000 plants per year) include, in order of importance, G.41, followed by G.11, G.935, G.969, G.890, and G.213. The total worldwide sales of these rootstocks was 8.8 million in 2017.

Currently in the world, there are only five to seven rootstock breeding programs. In addition to the Geneva® program, there are three programs in China, one in New Zealand, and one in Russia. A unique objective of one of the Chinese programs is apomixis in rootstocks, which would allow propagation of rootstocks by seed. This would drastically change the propagation industry in the world. Primary objectives of these programs include cold hardiness (Russia, China), fire blight resistance (New Zealand), and drought tolerance (China) (Gao et al., 2011; Ma et al., 2012; Sha et al., 2011; Wan et al., 2011; Zhang et al., 2011).

# 4 Rootstock propagation

Apple rootstocks are propagated either by seed, cuttings, layering, stooling, or by tissue culture. When propagated by seed, the grafted trees are usually vigorous, but also variable in tree size and productivity due to the variability inherent in seeds (Visser and Schaap, 1967). Thus, almost all apple rootstocks in the world are propagated asexually by cuttings, layerbed, or stoolbed. Only since about 2008 have apple rootstocks been propagated commercially by tissue culture (Castillo et al., 2015).

Propagation in all areas of the world, except some Asian countries including China, is mostly done by layerbed or stoolbed. However, in China most rootstocks are propagated by rooting of hardwood cuttings (Kwon et al., 1999; Yoshida and Muramatsu, 1998). This is due to the difficulty of propagating Malling stocks (which are used in the west) by cuttings (Sun and Bassuk, 1991), while rootstocks used in China have the genetic makeup to root well from cuttings.

Typically, propagation by stoolbed (plants planted vertically) or by layerbed (plants planted on an incline and then laid flat at the end of the first season) is done by planting rootstock plants in a row in a shallow trench (Hartmann et al., 1997). After the first year's growth, the plants are cut back to three buds on each shoot for a stoolbed or the shoots are laid horizontal along the ground in the bottom of the trench for a layerbed. Later in the spring of the second year, when shoots from the 'mother' plants reach about 30 cm tall, sawdust, peat, or soil is mounded up to cover the lower parts of the new shoot. The sawdust is kept moist by irrigation and additional layers of sawdust or soil are mounded up through the season to a height of 30 cm. In the late summer and fall and during the winter in climates with mild winters, the shoots develop roots from one to five nodes along the lower stem of the 1-year-old shoot. These shoots are harvested from the mother plants in late fall, winter, or early spring by cutting the stem below the new roots, but leaving intact the mother plant. The process is repeated each year by sweeping away the sawdust or soil from the mother plants in the spring, exposing the horizontal shoots in the layerbed or the upright plant in the stoolbed, and then adding more sawdust or soil again as new shoots reach 30 cm in height.

The ability to produce roots in a stoolbed or as a rooted cutting differs among rootstocks (Villeneuve, 1986). A related rootstock trait is the tendency to produce burr-knots which are aboveground masses of root initials. Burr-knots are considered a defect and create a risk of rootstock infection by the bacteria that causes fire blight (Marini et al., 2003). Good rooting in a stoolbed generally is associated with a tendency to produce burr-knots. Many of the Malling stocks produce burr-knots, but also can be propagated easily in a stoolbed, while many of the Geneva® rootstocks root poorly in a stoolbed and do not produce burr-knots.

The stoolbed/layerbed method has been used for several centuries to propagate apple rootstocks, with only small improvements in technique. This method is an extension of what happens naturally with some apple trees where root-derived suckers come up from the ground season after season (Costante et al., 1983). Rootstock clones that root well with this system have been successful commercially, while those that root poorly in this system usually have been discarded (Robinson et al., 1997). However, the 2005 introduction of G.41 (which does not root well in a layerbed) stimulated the development of improved new techniques. Adams (2010) found that applications of the gibberellin biosynthesis inhibitor, prohexadione-calcium, to the shoots of rootstock layerbeds when the shoots were 90-100 cm tall, resulted in a reduction in shoot growth, but better rooting at the base of the shoot. Fazio (unpublished data) also observed in commercial nursery settings that planting G.41 in a vertical position in a stoolbed at double or triple the normal density resulted in better rooting of each shoot. This was due to the more limited

number of shoots produced by each stooling mother plant (3-5 on a high-density stool plant vs. 10-15 from a layerbed plant) and the competition for resources between shoots. Lastly, Adams (2010) showed that if the stoolbed was established using tissue culture mother plants, rooting was improved significantly, and the increased rooting lasted for several years. These three improvements in stool/layerbed technology have allowed the successful stoolbed propagation of difficult-to-root rootstocks such as G.41.

A second important method of apple rootstock propagation has been the use of hardwood cuttings. This is the main method of propagation of rootstocks in China, but it is uncommon in other parts of the world. The most common rootstock in China is Malus prunifolia, which roots readily from cuttings (Yao et al., 2001). Typically, dormant (hardwood cuttings) are dipped in a synthetic auxin (indolebutyric acid, IBA) and then planted in a rooting bed of sand/soil in a plastic-covered high tunnel greenhouse and kept in high humidity until cuttings have rooted. They are then transplanted to a nursery where they are budded with a scion variety (Rong et al., 2011; Wen et al., 2018). This is seldom successful with Malling or Budagovsky rootstocks due to their low rooting percentage (Bassuk and Howard, 1980). Recently in the United States, several of the new Geneva® rootstocks have been propagated by softwood cuttings. Typically, green cuttings consisting of the tops of tissue-cultured plants are removed and dipped in rooting hormone (IBA), planted in a rooting bed of artificial media (vermiculite and peat moss), and kept under a plastic tunnel with misting until rooted. When the source of the green wood is micro-propagated material, these cuttings are more successful (Quamme and Hogue, 1994). These rooted plants are transplanted to a nursery and then budded in the late summer with a scion variety (Fleming, pers. comm.).

The newest large-scale commercial method of propagation is via tissue (tip) culture. Tissue culture consists of harvesting a shoot apex (an explant) and growing it on an artificial medium with a complete set of nutrients (Castillo et al., 2015; Geng et al., 2015). The plant hormones (or synthetic versions of plant hormones) are placed in the medium and their relative concentration is modified to obtain specific growth characteristics. By varying the balance of auxins and cytokinins, the explant is induced first to multiply by producing callus and shoots. These plants are divided and subdivided multiple times in an iterative process that produces thousands of new explants from an original plant. Later, the hormone balance is modified by increasing auxins to induce rooting. These small, sterile, rooted plantlets are then transplanted into a soilless medium and grown in a mist tunnel for several weeks for the first phase of acclimation ('hardening off'). Then they are moved to larger pots in a regular greenhouse to acclimate to higher light levels, and finally are moved to the open air. These rooted plants can then be planted in a nursery and budded with a scion variety. This method was tried in the 1980s for propagating M.9

and Mark, but problems arose when the plants developed differently in the field, with many more burr-knots and vigorous growth (James and Thurbon, 1979; Webster and Jones, 1989). This may have been due to epigenetic effects of the hormones used in the tissue culture process, or it may have been simply a mix up of plant material and the propagation of a seedling instead of M.9 or Mark. This occurred before the era of DNA fingerprinting, thus the problem was never resolved. Nevertheless, because of those bad experiences in Europe, the use of tissue culture to propagate apple rootstocks was banned and fell into disfavor. In the mid-2000s, Gennaro Fazio began working with various tissue culture labs in the United States in an effort to propagate G.41 via tissue culture since it is difficult to propagate by stoolbed or cuttings. Field trials of trees from these tissue-cultured rootstocks performed similarly to stoolbed propagated rootstocks (Autio et al., 2005, b); by 2010, commercial quantities of G.41 and other Geneva® rootstocks were being propagated by tissue culture. This success stimulated others in the world to accept tissue-cultured Geneva® rootstocks. By 2017, there were more than three million Geneva® rootstocks being propagated by tissue culture each year.

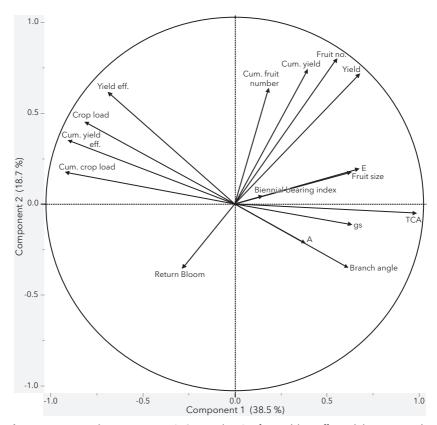
Important advances in both the techniques of apple rootstock tissue culture and the improvements in tree performance from tissue-cultured plants have been achieved. Each tissue culture company has developed proprietary methods to achieve commercial success. These individual trade secrets are not widely shared. However, the results in the nursery and in the orchard have been published. Adams (2010) showed that liners from tissuecultured plants have more roots and a more fibrous root system than stoolbed plants. The improvement in rooting carried over to the stoolbed where liners from a stoolbed that had tissue-cultured mother plants had more roots than liners from a stoolbed started with conventional plants. Because of the more fibrous root system, tissue culture plants establish better in the orchard. In addition to propagation benefits, micro-propagated plants feature a more vigorous root system with many more primary roots than conventional liners. Some nurseries are offering these well-developed root systems in a potted tree nursery production system that can be transplanted with few losses even during mid-summer.

Currently, the price of a stoolbed-produced rooted rootstock liner or a rooted cutting is less than a tissue-cultured, rooted rootstock liner. Nevertheless, all three methods are used commercially to propagate apple rootstocks worldwide. However, the stoolbed/layerbed method predominates.

#### 5 Rootstock evaluation

Systematic rootstock evaluation began with the work of Hatton at EMRS in the early 1900s (Hatton, 1917). Their published work was a guide for growers and

researchers alike. Individual researchers in Europe and North America continued individual comparative trials of rootstocks through the 1960s (Carlson, 1974; Nelson and Tukey, 1955). Later researchers in other countries also began comparative rootstock trials, including New Zealand, Australia, South Africa, Japan, and more recently China (Bergh, 1992; George and Nissen, 1986; Racsko et al., 2011; Tustin and Cashmore, 1994; Tustin et al., 1993). However, the trial results in one climate and soil type often differed from results of other trials in other climates. This led to substantial confusion and differing opinions among researchers and growers. In 1976, a group of researchers in eastern North America launched a coordinated rootstock testing program named the NC-140 project (Ferree, 1991, 1992; Ferree and Perry, 1989). This group began conducting uniform multilocation orchard comparisons of rootstocks and met annually to compare results. The project was later expanded across the United States and now includes participants from Canada and Mexico as well. The group also conducts comparative research trials with peach, cherry and pear rootstocks (Cowgill et al., 2017). Over the 45-year existence of this project, it has conducted 18 trials of apple rootstocks (approximately one every 3 years). With each new trial, the latest rootstocks from around the world have been included. The primary rootstock characteristics evaluated in the coordinated NC-140 trials include tree survival in various climates, level of dwarfing, precocity, yield, yield efficiency, fruit size, number of root suckers, and burr-knots. A similar group of researchers from Europe was organized in 2003 and is conducting coordinated uniform multilocation rootstock trials in several European countries (Kviklys, 2011). Another group led by Leo Rufato began multilocation coordinated trials in Brazil in 2014.


In addition to coordinated trials, individual researchers have focused on evaluations of cold hardiness, graft union strength, virus susceptibility, tolerance to replant disease, nematode tolerance or resistance, and mineral nutrient profiles.

#### 6 Rootstock effects on scion traits and mechanisms

Rootstock genotype has numerous effects on the scion, including vigor, precocity, yield efficiency, partitioning of carbon, mineral nutrient profile, branch angle, and graft union strength (Fig. 1). In addition, rootstock tolerance or susceptibility to soil characteristics, climate stress, and biotic stresses determine if the tree survives, is stunted, or grows well.

## 6.1 Dwarfing

The most desirable rootstock characteristic is dwarfing. In most cases, seedling rootstocks confer the most vigor. The current list of clonal rootstocks range in



**Figure 1** Principal components (PCA analysis) of variables affected by rootstocks: cumulative fruit number, cumulative yield, fruit number, yield, mean biennial bearing index, fruit size, transpiration (E), trunk cross-sectional area (TCA), stomatal conductance (gs), carbon assimilation (A), branch angle, return bloom, cumulative crop load, cumulative yield efficiency, crop load, and yield efficiency. The arrows indicate the effects that are positively correlated (in the same quadrant) and those that are negatively correlated (opposite quadrants).

vigor from 100% to only 10% of seedling (Table 1). This vast range of dwarfing has allowed a 10- to 20-fold increase in planting density in modern orchards. Although the mechanism of dwarfing has been studied intensively for more than 50 years, the complete explanation of apple dwarfing is still not clear. In the last 10 years, the genetic basis of dwarfing has been linked to several genes, *Dw1* and *Dw2*, and possibly a third (Fazio et al., 2014; Foster et al., 2015; Harrison et al., 2016). The physiological expression of these genes is less clear as they have not been characterized yet at the molecular level. Physiologists have measured effects of dwarfing rootstocks on root-supplied hormones and distinct carbon partitioning, with dwarfing rootstocks inducing a much greater use of carbon for fruit production compared to root system development. This

is probably why trees on dwarfing rootstocks have much smaller root systems. It has been shown that dwarfing in apple is not caused by restricted water supply to the scion (Olien and Lakso, 1986). While the rootstock may cause some changes in vessel size, xylem element and vascular resistance to water is similar in vigorous and dwarfing rootstocks (Tworkoski and Fazio, 2011). In contrast, dwarfing in peach has been linked to water stress induced by dwarfing rootstocks (Johnson et al., 2011). Currently, the physiological basis for dwarfing appears to be a combination of root-supplied signals (maybe hormones) to the scion, inducing increased flowering, and reduced partitioning of carbon to the root system and early termination of vegetative growth (Foster et al., 2017; Van Hooijdonk et al., 2010).

#### 6.2 Precocity

Precocity or induction of early bearing is defined as the earliness of an apple tree to flower and begin fruiting (Fazio et al., 2014). The physiological trait of juvenility describes young trees that are grown from seeds which do not produce any flowers or fruits for several (5-8) years, a phenomenon that seems to be linked to changes in methylation of the apple genome (Hafiz et al., 2008). As the trees age, they transition from juvenility to a reproductive stage of flowering and fruiting. The basis of juvenility may be linked to a plethora of root signals, including hormones. Gene-altering approaches that modulate genes involved in flower induction have been shown to reduce this juvenile phase for breeding purposes (Kotoda et al., 2006; Schlatholter et al., 2018; Schouten et al., 2009); however, thus far they have not proven successful in graft transmissible alteration of the juvenile period. When a mature (nonjuvenile) apple scion is grafted on a seedling rootstock (which is juvenile), the scion may revert to a juvenile-like phase and flowering may be delayed for 5-8 years after grafting. However, when grafted onto a precocious clonal rootstock, there is no reversion to a juvenile-like phase, with the potential for flowering to occur in the first or second year in the orchard (Schmidt, 1986). Rootstocks differ in their effect on scion precocity (Fallahi and Mohan, 2000). Most of the semi-dwarfing rootstocks from the Malling series, and the Budagovsky series, are more precocious than seedling rootstocks, but flowering is still delayed 3-5 years after grafting. However, the dwarfing Malling, Budagovsky, and Geneva® rootstocks are much more precocious, with flowering in the first year in the orchard or even in the nursery. G.11 rootstock is highly precocious and can have flowers itself in the nursery. Interestingly, many of the semi-dwarf Geneva® rootstocks are also highly precocious such as the more dwarfing rootstocks. Precocity was a selection factor for semi-dwarf Geneva® rootstocks, since the lack of precocity is a serious flaw in Malling and Budgovsky semi-dwarfing rootstocks. Precocity induced by the rootstock has a large effect on orchard

economics, since early production in years 1-5 is important for repaying the capital investment in a new orchard. The increase in precocity of dwarfing rootstocks has allowed the planting of much higher tree densities, with associated higher orchard establishment costs, since the investment can be paid off rapidly (Lordan et al., 2018a; Reig et al., 2019).

#### 6.3 Yield efficiency and harvest index

A primary criterion to compare rootstocks has been the calculation of yield efficiency, which is defined as the weight of fruit produced (kg) per unit of trunk cross-sectional area (TCA in cm²) measured at a set distance above the graft union (Robinson et al., 1991b). This is a rootstock-scion performance efficiency measurement since it relates the tree's fruit output relative to the size of tree as measured by TCA, which tends to be proportional to canopy size up to a point. This facilitates the comparison of trees on rootstocks of vastly different vigor and tree size on an orchard-area basis. However, this measure was developed for comparing trees on rootstocks of varying vigor that were minimally constrained by allotted orchard space in evaluation trials for which the filling of orchard space and canopy maturation typically took 6-10 years. It has recently been recognized that, as long as the primary determinant of canopy size is rootstock vigor, yield efficiency allows comparative evaluation of differences in rootstockinduced productivity relative to vegetative growth. However, as orchards have become more dense, with a primary training/production system focus on filling allotted orchard space and reaching full production rapidly, the point at which the canopy completes the filling of its allotted space occurs much earlier, and therefore pruning intervention to maintain the canopy in that space becomes a confounding factor to yield efficiency calculations, since the canopy's productive area is no longer expanding but the TCA continues to increase for the life of the tree. Therefore, yield efficiency comparisons are primarily of value only until the allotted orchard space is filled. Furthermore, as modern orchards are trained and pruned to more two-dimensional 'fruiting wall' canopy architectures, the inherent rootstock effect on yield efficiency is further confounded due to nonrootstock-based horticultural interventions.

When fruit production over several years (traditionally 10 in rootstock comparison trials, perhaps less for higher density training systems) is summed and the cumulative production is divided by the tree TCA (at the point at which allotted orchard space is filled), an estimate of harvest index is obtained (Palmer, 2011; Strong and Azarenko, 2000). Harvest index is the measure of fruit production compared to vegetative production (branches, leaves, trunk, and roots) of the tree. However, harvest index is difficult and expensive to measure, thus the measure of cumulative yield efficiency is used since final TCA is an estimate of the cumulative vegetative growth of the tree. In the few cases

where harvest index has been measured directly, dwarfing rootstocks (M.9) were found to partition 70–80% of annual carbon into fruit and only 20–30% to vegetative growth, while vigorous rootstocks induce much more partitioning of carbon into vegetative growth (>50%) (Strong and Miller Azarenko, 1991).

An annual estimate of partitioning of carbon into fruit vs. vegetative growth can be obtained from the ratio of fruit production (kg) to the incremental increase in TCA (cm² increase); however, this estimate of annual harvest index is less commonly used by rootstock researchers. If this annual estimate was used more, it could show how the partitioning of carbon between fruit production and vegetative production changes over time, and would allow the identification of rootstocks that will be problematic over time as the orchard matures since they continue to have a high fraction of carbon partitioned into vegetative growth even when the tree is mature.

Rootstock vigor is linked loosely to yield efficiency, with most vigorous, semi-vigorous rootstocks, and semi-dwarfing having lower yield efficiency than dwarfing stocks. Interestingly, many of the semi-dwarfing Geneva® rootstocks have yield efficiencies that are similar to dwarfing rootstocks (Reig et al., 2018; Russo et al., 2007). This is because high yield efficiency was a selection criterion for semi-dwarfing Geneva® stocks. The increase in yield efficiency has resulted in much higher yields per ha for dwarf trees if the dwarf trees are planted at their optimum tree density, as predicted from their inherent tree size (Lordan et al., 2018b). The indiscriminate use of high yield efficiency values to plan orchard designs has resulted in serious errors for the apple industry when scion vigor is low, and growers choose the most dwarfing rootstocks available because of their high yield efficiency. This has resulted in many orchards where the trees do not fill the space allocated to each tree, resulting in moderate yields per ha even though the yield efficiency of the rootstocks is high. Nevertheless, if rootstock vigor is sufficient to fill the space quickly, then the high yield efficiency of a dwarfing rootstock will result in higher yields than a less-efficient rootstock. This improved mature production is an important factor for sustainable longterm profitability of high-density orchards on dwarfing rootstocks, compared to medium and low-density orchards on semi-dwarfing or vigorous rootstocks (Lordan et al., 2018a).

It seems clear that the impact of rootstocks on carbon partitioning and flowering is intertwined with the dwarfing effect of the rootstock on the scion. Since a dwarfing rootstock induces the partitioning of 70-80% of annual fixed carbon into the fruit, the amount of carbon left for vegetative growth is a small fraction of that available in a tree on a vigorous rootstock. The mechanism of increased yield efficiency of dwarfing rootstocks is not completely clear. Evidence to date indicates that increased root-supplied hormones differ among rootstocks (Adams et al., 2018; Lordan et al., 2017) and may cause increased flower initiation and fruit set, which leads to early production in

the first or second years accompanied by higher partitioning of carbon to fruits. However, that explanation does not fully explain the dwarfing effect of rootstocks, since shoots of the scion on a dwarfing rootstock also stop growth earlier in the season that those on a vigorous rootstock. Nor does it explain why interstems of varying length decrease vigor and increase early bearing in apple trees (Carlson and Oh, 1975).

#### 6.4 Influence on leaf and fruit nutrient concentrations

Recently, there has been great interest in rootstock effects on fruit mineral nutrient profiles. This has been driven by the widespread planting of the variety 'Honeycrisp,' which suffers from several fruit disorders including the calcium-related disorder bitter pit (Baugher et al., 2017; Biggs and Peck, 2015; Rosenberger et al., 2004). While the modulation of nutrients in the scion by rootstocks had been described in the past (Lockard, 1976; Rom and Rom, 1991; Tukey et al., 1962), the types of rootstocks used in such research were genetically very similar (Duan et al., 2017; Gharghani et al., 2010; Jin et al., 2012). Wide crosses performed in the Geneva® breeding program have revealed significantly different nutrient profiles induced by rootstocks (Fazio et al., 2012, 2013). Some rootstocks cause greater levels of K in the leaves or in the fruit, while others induce higher levels of Ca in the fruit or the leaves. Such rootstockinduced differences have been shown for several other nutrients, including N, P, S, Mg, and B (Reig et al., 2018). Changes in soil pH, for example, caused differences in the expected absorption curves for metal ions such as manganese and iron, indicating that some rootstocks perform better at certain pH values than others (Fazio et al., 2012). Soil pH is one of the most important predictors of soil fertility, and developing a set of rootstocks well adapted to specific pH profiles may improve orchard performance and open marginal land to apple cultivation. The genetic inheritance of nutrient absorption and translocation to different parts of the scion is quite complex, as there are many mechanisms that contribute to a rootstock's differential efficiency for a particular nutrient (differential evapotranspiration, crop load, root morphology, water availability and use efficiency, interaction with soil biota, active and passive transport, vessel composition, and size etc.) and the genetic landscape described by Fazio et al. (2013) shows a very dynamic multi-locus model intertwined with between-nutrient to nutrient positive and negative correlations. It is possible to identify rootstocks with high calcium effects on the scion; however, given the complex genetic nature of each nutrient profile, the combinatorial probability of developing a rootstock that features multiple desirable nutrient profiles decreases with the addition of more nutrient requirements (Fazio et al., 2015a; Reig et al., 2018). Therefore, nutrient-based selection of new apple rootstocks may have to be limited to a few nutrients at a time.

#### 6.5 Branch angle and hormones

Within rootstock breeding populations, breeders have noticed the induction of differences in scion branch angle as well as level of sylleptic branching. Fazio and Robinson (2008a,b) reported certain Geneva® rootstocks induced flatter scion branch angles than other Malling stocks. G.935 is particularly adept at this in a nursery environment; it consistently promotes more feathers (sylleptic branches) than other traditional rootstocks. More recently, Lordan et al. (2017) showed that certain Geneva® rootstocks (e.g. G.11 and G.41) had higher levels of root-supplied cytokinins and abscisic acid than other Malling stocks (Lordan et al., 2017). This hormone profile was somewhat associated with flatter branch angles. Flatter branch angle also is associated with the potential for more flowers (Lauri and Lespinasse, 2001). This trait is potentially quite valuable in high-density orchard production systems, since trees with flat branch angles require less branch manipulation to control tree vigor.

#### 7 Rootstock tolerance to abiotic and biotic stresses

#### 7.1 Cold hardiness and lack of winter chilling

In northern climates, fall, mid-winter, and early spring cold temperatures are a serious risk and limitation to apple tree survival (Moran et al., 2018). In warmer climates, the lack of winter cold (sufficient to complete the endodormancy to ecodormancy transition) is also a limitation to uniform bud burst in the spring. Rootstocks can affect both cold hardiness and the chilling requirement for bud burst in the spring.

When fully cold-acclimated, apple flower buds can withstand temperatures of  $-30^{\circ}$ C; however, roots can only withstand temperatures of  $-10^{\circ}$ C. Soil buffering capacity for cold winter temperatures and snow cover usually protect roots from the temperatures below  $-10^{\circ}$ C. However, if there is little snow cover and there are prolonged air temperatures below  $-30^{\circ}$ C, then damaging soil temperatures below  $-10^{\circ}$ C can occur in the root zone. A second type of rootstock damage during winter can affect the rootstock shank (the trunk-like portion of the root system below the graft union). If cold winter temperatures occur with no snow cover, the part of the rootstock that is exposed above ground and the part just below the soil surface can be damaged. If the entire cambium is killed in this zone just above and below the soil line, the tree will die in the spring about blossom time or during mid-summer when temperatures get hot (Embree and McRae, 1991; Prive et al., 2001).

The hardiness of the rootstock shank varies considerably among rootstocks. Differential tolerance to cold temperatures has been studied and certain Malling stocks such as M.7 are quite sensitive to winter damage at moderately cold temperatures of  $-20^{\circ}$ C. In 1990, Quamme classified the

rootstocks available at the time for winter hardiness. He classified M.7 as very tender, M.2, M.4, M.9, MM.106, and P.16 as tender, M.26, MM.111, MM.104, P.1, and J.9 as moderately hardy and Antonovka seedling, A.2, Beautiful Arcade, O.3, O.8, B.9, P.2, P.22, and P.18 as hardy (Quamme, 1990; Quamme et al., 1997). Under severe climatic conditions in Poland, tree mortality was greater on M.9 than on M.26 or B.9 (Czynczyk and Zagaja, 1984). Following the mid-winter cold event of 2004, Robinson et al. (2006) found tree survival with 'Honeycrisp' and 'McIntosh' as the scions was greatest (~90%) for O.3, V.1, V.3, G.16, G.30, and Mark. B.118, M.9T337, B.9, M.9 Nic 29, Supporter 4, M.26, and MM.111 had only 50% survival, while M.7 and MM.106 had very poor survival. Moran et al. (2011a) froze non-grafted rootstocks and found that G.41, G.11, G.30, B.9, P.2, and M.26 had similar hardiness, whereas G.935 had greater root hardiness than M.26 (Moran et al., 2011a,b). More recently, Moran et al. (2018) found that the Geneva® and Vineland series rootstocks exhibited a high degree of winter hardiness in January, but that some were more tender in the fall (October) or in the spring (April). G.30 was not hardy below -15°C in October or in April, while CG.4013 was not hardy below -15°C in the fall and CG.5257 was not hardy below -15°C in April. However, in November or in March, they had hardiness similar to mid-winter levels.

On the other extreme of low winter temperatures is the situation in some apple-growing regions of the world of too little winter cold to satisfy the endodormancy chilling requirement. Without adequate chilling, bud burst of the scion in the spring is delayed and variable, with a high percentage of buds failing to grow and subsequently dying (Midgley and Lotze, 2011; Rufato et al., 2010). Rootstocks can affect the percentage of buds on the scion that grow in spring following insufficient chilling. Recently, researchers in Brazil found that G.213 rootstock had a greater percentage of buds that grew in the spring after mild winters compared to M.9 or Marubakaido rootstocks. The same research revealed that other Geneva® rootstocks, such as G.210 or G.814, also may have a positive effect of bud development in climates with too little winter chilling (Macedo et al., 2018). Preliminary studies indicate that these rootstocks have higher levels of root-supplied cytokinins which may stimulate bud growth of the scion. Experiments conducted in Geneva, New York, that subjected 'Gala' budded on similar rootstocks found that budbreak occurred after accumulation of 550 chilling hours, about 150 less than the standard requirement for 'Gala.'

# 7.2 Drought tolerance and WUE

Apple tree WUE is a complex trait defined by the amount of photosynthesized carbon per unit of water transpired, and is commonly measured seasonally (units of seasonal dry-matter growth/units of water) or by measuring  $CO_2$ ,  $O_2$ , and  $H_2O$  flux of tree canopies during short periods (Glenn, 2014). WUE

in combination with phytohormones and root morphology are thought to be associated with drought tolerance in apples (Tworkoski et al., 2016; Zhang et al., 2014). Phenotypic diversity for WUE physiological and morphological components were found in domesticated apple and related wild species (Bassett et al., 2011), and several genes responding to water deficit have been described in apple roots (Bassett et al., 2014). While WUE may be related to tolerance to drought stress, the effective measure of tolerance to drought stress should be the maintenance of productivity and marketable fruit quality after the occurrence of stress (Atkinson et al., 1997). This is a difficult parameter to measure, because beyond the effect of apple rootstocks, soil conditions, scion variety, crop load, and other physiological variables all contribute to that parameter (Atkinson et al., 2000; Ebel et al., 2001; Lo Bianco et al., 2012).

#### 7.3 Fire blight

One of the most serious risks to orchards on susceptible rootstocks is the bacterial disease fire blight. Although fire blight infects blossoms through the nectary in open flowers, it can travel in the plant through the xylem and then infect the cambium of the rootstock. If the rootstock is sensitive to fire blight, the cambium connecting the top of the tree and the root system is killed and the tree collapses a few months later or the next year (Norelli et al., 2001). Some of the Malling semi-dwarfing rootstocks, such as M.7 and MM.111, are partially resistant and thus there was little tree death in the era when they were the predominant rootstocks. However, M.9 and M.26 are extremely susceptible, and with the increased use of M.9 since the late 1990s, there have been numerous fire blight epidemics that have killed millions of trees and have cost apple growers millions of dollars in losses (Aldwinckle et al., 2004; Russo et al., 2007). A recent (2018) epidemic in Washington (USA) caused the death of an estimated 10% of the trees. Because of this risk, the primary objective of the Geneva rootstock breeding program was to develop fire blight-resistant rootstocks. If the rootstock is resistant, some flowers and then branches in the scion may become infected, but they can be removed by pruning and the tree will survive. The Geneva rootstock program has now released 14 fire blightresistant rootstocks. The new rootstocks from New Zealand (IFO series) also are reported to be resistant.

The basis of the fire blight resistance used in the Geneva breeding program was the rootstock 'Robusta 5,' which is a descendant of an Asiatic crab apple species *Malus X robusta*. The Geneva progeny of 'Robusta 5' have broad resistance to fire blight strains, but there exists some variability in resistance to all known strains (Fazio et al., 2008). G.41 has some of the strongest resistance, while G.935 has shown some susceptibility to one strain. Nevertheless, they all have provided growers with a level of protection to the risk of tree death due

to fire blight. Genetic inheritance of the 'Robusta 5'-type of resistance has been described as having a strain-specific component on chromosome 3 identified as a gene belonging to the NBS-LRR class of resistance genes (Broggini et al., 2014a,b; Fahrentrapp et al., 2013; Kost et al., 2015). Other minor QTLs on linkage groups 5, 7, 11, and 14, which do not seem to be strain-specific, were detected in a non-rootstock population ('Idared' × 'Robusta 5') (Wohner et al., 2014). Another non-strain-specific locus was discovered on linkage group 7 in a rootstock population derived from a cross between 'Ottawa 3' and 'Robusta 5' (Gardiner et al., 2012). Cis-genic approaches with the *LG03* gene proved only partially successful, suggesting a more complex pathway of resistance than just one gene recognition of the pathogen (Kost et al., 2015). There is some evidence of graft transmissible benefits conferred to the grafted scion from fire blight-resistant rootstocks (Jensen et al., 2003, 2011, 2012), including reports by large-scale apple growers that they see less mortality and incidence of strikes when a resistant rootstock is used.

A unique situation was discovered with B.9 rootstocks. It was shown to be susceptible when inoculated with the bacteria, but when used as a rootstock and the scion was inoculated, it exhibited good field-level resistance (LoGiudice et al., 2006; Russo et al., 2008a,b).

#### 7.4 Apple replant disease (ARD)

When apple trees are replanted in the same orchard in which apples and pears were planted previously, the new trees often are stunted and do not grow well. This problem has been named apple replant disease (ARD) and is caused by a complex of several microorganisms which thrive on the roots of the previous apple trees in the soil where the trees grew. Mazzola (1998) has reported that the most important pathogens associated with the disease include *Phythium*, *Phytophthora* spp., *Rhizoctonia solani*, and *Cylindrocarpon* spp., as well as the root lesion nematode (*Pratylenchus penetrans*) and bacteria (Mazzola, 1998). Research trials and grower observation indicate that M.26 is very sensitive to ARD (Robinson, 2011). In virgin soils, M.26 produces a larger tree than M.9, but in replant soils it often is similar in size or smaller than M.9. All rootstocks exhibit less vigorous growth on replant soils than virgin soils. This has resulted in the use of soil fumigation to kill pathogenic microorganisms prior to planting (Peryea and Covey, 1989; Yao et al., 2006), which sometimes (depending on soil type) is not effective.

Beginning in 2000, Merwin and students evaluated Geneva® rootstocks for replant disease tolerance and found that G.65, CG.6210, and G.30 show greater tolerance to the disease than Malling stocks (Isutsa and Merwin, 2000). Rumberger et al. (2004) found that trees on M.7, M.26, and G.16 remained smaller when growing in the previous tree rows compared with previous

grass lanes, whereas the growth of trees on G.210 and G.30 planted in the two locations was similar. Leinfelder and Merwin (2006) suggested that using G.30 and G.210 rootstocks and planting in the previous grass lanes instead of the old rows may be an effective strategy against ARD. Based on field trials, Robinson et al. (2006) found that G.935 and G.202 had good tolerance to ARD. In a replant study in Washington, Mazzola et al. (2009b) found that G.11 and G.30 were more tolerant to lesion nematode than M.7, M.9, M.26, MM.106, and MM.111 (Mazzola et al., 2009a,b). Trees on M.26, MM.106, and MM.111 were more susceptible to *Pythium* spp. than trees on B.9 and rootstocks in the Geneva® series. Auvil et al. (2011) also reported that trees on several Geneva® rootstocks in several Washington locations outperformed the industry standards (B.9, M.9, and M.26) on replant sites (Auvil et al., 2011). In replant trials in North Carolina (USA), trees on G.30 and G.210 performed better in replant soils than trees on M.26 and M.7 (Parker et al., 2014).

The mechanism of ARD tolerance of Geneva® rootstocks is not clear. It is possible that the early screening for resistance to *Phytophthora* root rot fungi also co-screened for tolerance to other soil microorganisms. It is also possible that the root systems of the tolerant Geneva® rootstocks simply have a faster turnover rate and can essentially outgrow the pathogens (Atucha et al., 2013). What is remarkable is that the microbial community in the rhizosphere of these new rootstocks is drastically changed compared to the Malling stocks (Rumberger et al., 2007), possibly by deposition of specific exudates (Leisso et al., 2017, 2018). Regardless of the mechanism, this tolerance to ARD for replanting apple orchards on previous orchard land is becoming more important as soil fumigation options become more limited. In some parts of the United States and the world, soil fumigation is no longer an available option.

#### 7.5 Viruses

Some plant viruses are lethal to many apple varieties, but other viruses are not lethal to most apple varieties and rootstocks. Viruses that can exist in the plant and cause few symptoms are termed latent viruses, which can be spread to new trees by grafting infected wood on clean rootstocks or by grafting clean wood on infected rootstocks. There are five main latent viruses: apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV) and tomato ringspot virus (ToRSV) (Fuchs et al., 2018). Over time, all common commercial rootstocks from the Malling series became infected with one or more latent viruses. During the 1950s and 1960s, the Malling stocks were heat-treated to eliminate known viruses, and were given the designation East Malling-Long Ashton (EMLA). The clean versions of the Malling stocks were slightly more vigorous than the infected versions. In addition to the effort at the East Malling and Long Ashton

research stations, the Dutch organization NAKB and the French organization CTIFL produced their own versions of clean M.9. The Dutch clean M.9 is referred as M.9T337 and the French version is referred as M.9Pajam1 and Pajam2.

A specific case of lethality was with MM.106 rootstock. When 'Delicious' scions were grafted on MM.106 and the trees were later infected with ToRSV through nematode vectors, the trees developed a brown (dead) line of cells at the graft union and the trees died (Tuttle and Gotlieb, 1985). More recently, several of the Geneva® rootstocks have shown susceptibility to one or more of the latent viruses. G.16 was very sensitive to the three most common latent viruses and required the use of virus-free budwood; otherwise, the trees die in the nursery or in the first year in the orchard. G.814 and G.935 have shown lesser susceptibility to latent viruses. The case of G.935 is still unclear, since it seems tolerant of individual viruses, but possibly combinations of viruses result in poor growth although the trees do not die. Nevertheless, the solution to these sensitivities is the use of virus-free bud wood since the common latent viruses are only transmitted by grafting.

Some apple-growing regions, such as the European Union, have very good virus elimination programs and require both rootstocks and scion wood to be virus-free. However, other areas, such as the United States, have allowed virus elimination programs to lapse due to limited government funding, and currently there are widespread latent virus infections in New York orchards (Fuchs et al., 2018). It is imperative that apple regions worldwide strengthen their virus elimination programs.

# 7.6 Tree anchorage and graft union strength

In the era when trees were expected to be freestanding (i.e., before trees were supported by posts or trellises), the anchorage of a rootstock was an important characteristic. Most of the semi-dwarfing rootstocks from around the world are freestanding, but some semi-dwarfing and the dwarfing rootstocks are not. M.7 is a semi-dwarfing rootstock that is freestanding in most cases, but with heavy rains and winds it can lean. In many orchards with M.7, about 30% of the trees exhibit significant leaning. In the previous era of semi-dwarfing rootstocks, many orchards with M.7 required tree support. However, with the adoption of the dwarfing rootstocks M.9 and M.26, tree support is required because the rootstock does not provide sufficient anchorage to support the tree with a heavy crop load. Support is also required because dwarfing rootstocks are much more precocious, resulting in a heavy crop on a young tree with small diameter limbs and trunk which can break down the canopy without support. Thus, in the dwarf tree era and high planting densities, rootstock anchorage has become an unimportant rootstock characteristic.

Another tree structural issue is rootstock-scion graft union strength, which has become more important with the adoption of dwarfing rootstocks. Both M.9 and M.26 have weak graft unions with some scion cultivars (e.g. 'Gala'), which requires good trellis support. Geneva® 30 also has exhibited poor graft union strength with 'Gala,' as high winds from a 1990 hurricane caused the breakage of mature trees at the graft union. Recent nursery and field observations indicate that unions of some newer cultivars, such as 'Cripps Pink' and 'Scilate' on G.41, are also brittle and trees break in wind storms, as well as when digging trees in the nursery or planting trees in the orchard. Since tree breakage can have significant economic consequences for nurserymen and orchardists, researchers have evaluated methods for determining union strength and flexibility (Adams et al., 2017). The amount of force required to break graft unions currently is used in the Geneva breeding program to classify graft union strength of rootstocks. Rehkugler et al. (1979) found that 18-yearold 'Golden Delicious' on M.9 could withstand only one-third of the force required to cause breakage on vigorous rootstocks (Rehkugler et al., 1979). Robinson et al. (2003) found the graft union of 'Gala'/G.30 was more brittle than 'Gala'/M.26, but the strength of the 'Gala'/G.30 graft union increased with tree age (Robinson et al., 2003). Adams et al. (2017) found that 'Scilate'/G.41 graft unions were weaker than 'Scilate'/M.9 graft unions, and that grafting method did not improve the graft union strength. Application of plant growth regulators to graft unions in the nursery did improve graft union strength: foliar applications of prohexadione-calcium and benzyladenine applied to the union in latex paint increased the flexural strength per scion cross-sectional area and the flexibility of the union. To avoid tree breakage problems, support should be provided in the nursery, as well as in the orchard so branches can be tied to multiple wires to prevent the twisting of trees in the wind.

# 8 Trends in apple (and other tree fruit) rootstock use

Over the last 100 years, total worldwide apple rootstock production has increased many fold. This is due to increased acreage worldwide, but also due to the tenfold increase in planting density as the world's apple growers moved from low-density orchards to high-density orchards. Our estimate of worldwide production of apple rootstocks is two million plants in 1950, but in 2019 we estimate there are more than 120 million rootstocks produced worldwide.

The apple-producing world before 1950 primarily used seedling rootstocks. Excluding China, starting in the mid-twentieth century a slow transition from seedling rootstocks to semi-dwarfing Malling rootstocks (MM.106, MM.111, and M.7) began and accelerated in the 1960s and 1970s so that by 1980, semi-dwarfing rootstocks accounted for an estimated 80% of all apple rootstocks in the world. However, starting in the 1970s, the use

of M.9 increased from less than 10% of all rootstocks to almost 70% of all rootstocks by 2000, while the use of semi-dwarfing rootstocks declined rapidly during the 1990s. As M.9 gained in popularity, M.26 also grew to account for about 20% of rootstocks produced by the year 2000. Since 2000, M.9 has dominated the worldwide production of rootstocks, but in some countries, B.9 has increased rapidly and accounts for 20% of all rootstocks produced today. Since 2006, the production of the Geneva® rootstock series has increased rapidly in the United States and, in 2019, accounts for about 40% of all rootstocks produced. On a worldwide scale, the Geneva® rootstocks account for about 8% of all rootstocks. It is expected that their production will rise to account for 50% of worldwide apple rootstock production (excluding China) in the next 10 years.

Apple rootstock usage in China has followed a different path. Apple production in China before 1980 was small; however, due to government promotion of growing apples, production exploded in the late 1980s and 1990s. This resulted in China becoming the largest apple-producing country in the world by 2000, with currently five times the production of the second largest producer, the United States. Almost all Chinese apple production is based on vigorous and semi-vigorous rootstocks of *Malus prunifolia*, *M. baccata*, *M. hupehensis*, *M. micromalus*, and *M. seversei*. Although China has a vast orchard area, the planting densities are moderate, thus resulting in an estimated annual rootstock production of 30 million plants, which is similar to the European apple rootstock production.

This historical evolution of apple production tied to rootstock innovations presents a template for the likely evolution of other temperate zone tree fruit production systems as well. Clearly, sweet cherry production has undergone a similar, even more rapid evolution and expansion since the first development of vigor-limiting, precocious rootstocks (primarily the Gisela® series) in the 1980s and 1990s. Significant advances in genetic development and selection of vigor-limiting peach and pear rootstocks also have been made since the turn of the century, with the subsequent research into their utilization for production system innovations now in their early stages.

# 9 Future trends in apple rootstocks

In the previous century, the primary criteria in choice of apple rootstock has been "will it survive in my climate, is it the right vigor and is it available?" Cold damage and fire blight have been the two primary and economically important causes of tree death in North America. In addition, *Phytophthora* root rots and waterlogging have also caused tree death. Thus, the rootstock decision in the past was usually quite simple, with only one or two choices available to growers. However, with the proliferation of improved apple rootstocks available

around the world, there is now a dizzying array of choices for apple growers. The Geneva breeding program alone has released 14 apple rootstocks and is poised to release four more in the next few years. Even so, availability of new rootstocks is still a problem for some growing regions.

Researchers are attempting to evaluate new rootstocks in different locations and provide advice to apple growers regarding which rootstocks will perform best in each region. With so many rootstock choices, Fazio has suggested the term 'designer rootstocks' to indicate the possibility of choosing a rootstock suited for the specific climate, soil, cultivar, and planting system a grower chooses. Robinson further defined the four variables that need to be determined specifically for each orchard before choosing a rootstock: (1) vigor of the variety, (2) vigor imparted by the climate, (3) vigor imparted by the soil, and (4) the space allocated to each tree. Each of these should be considered as pieces of a puzzle specific to each orchard or areas in an orchard for selecting the rootstock. Robinson has further suggested that a rootstock in a modern orchard should be able to grow well enough to fill the space allocated to the tree in 2 years and begin production in either the first or second year, depending on the quality of available nursery trees. If rootstock vigor combined with scion, climate, and soil vigor do not result in sufficient growth to fill the space in 2 years, then substantial economic penalties in lost yield accrue to the grower. When rootstock choices were relatively limited, growers often planted an available rootstock that was not well matched with all of the vigor factors (including tree spacing), resulting in trees that took 5-8 years to fill their allotted space or that grew too vigorously for the allotted space and then were difficult to manage in later years. Robinson has estimated that with high-priced varieties, the lost yield when trees fail to fill their space by the end of the second or third year can cost up to \$250 000/ha in lost yield over the first 8 years of orchard life. This economic reality often is not appreciated by growers who never see the un-realized income from lower-than-potential yields due to the wrong rootstock choice.

The introduction of the 'Honeycrisp' apple in the United States in the mid-1990s brought new challenges to growers for rootstock selection. It is a weak-growing cultivar that often fails to fill the orchard space allocated to the tree in 2 years when grafted to dwarfing rootstocks. However, due to its high market price, 'Honeycrisp' has been very profitable for growers even though it often fails to achieve this goal. In addition, its susceptibility to the Ca-related disorder, bitter pit, has resulted in the quest for rootstocks that not only have the appropriate vigor level but also have a genetically programmed specific mineral nutrient profile for higher Ca uptake and a better translocated K/ Ca ratio in the fruit to reduce bitter pit. A national project involving a group of US researchers from the NC140 rootstock evaluation group has begun a

5-year project to speed the discovery of such rootstocks that are more ideally matched to specific varieties in locations where apples are produced. Similarly, this effort is also examining potential rootstocks for new areas of production that historically have been limited by high soil pH and/or high salt tolerance and drought tolerance. The project intends to develop an online decision aid tool to help growers choose the right rootstock for their specific soil, climate, variety, and spacing.

The future of rootstock improvement will assuredly lead to greater combinations of resistance/tolerance to biotic and abiotic stresses and positive horticultural traits. In the short term, efforts to characterize existing rootstocks or existing breeding populations for all of the desirable rootstock traits can be done relatively rapidly (10 years). However, to breed new 'designer' rootstocks for specific combinations of important traits is a much longer process (30 years). To speed up progress, marker-assisted breeding will improve the efficiency of selecting rootstocks with desirable traits at an early stage, potentially reducing the time to develop a new rootstock to only 13 years (2-3 years to select for one or more desirable traits and 10 years for propagation and field evaluation). Another possible way to accelerate rootstock development is to use genetic engineering through cis-gene transfer of specific apple genes through CRISPR-Cas9 technology. By this method, a specific gene could be inserted to an elite rootstock that already has many positive attributes. This may reduce the time to develop a new rootstock to only 11 years (1 year for gene transfer and 10 years for propagation and field testing).

Limitations to rapidly introducing a new rootstock worldwide include virus-certification, bulk propagation, and the need by growers and researchers in each production region worldwide to establish objective rootstock trials to confirm the performance of a rootstock in a given climate with the target varieties. Most growers are hesitant to plant a new rootstock that has not been proven in their area. For growers, a new orchard is at least a 20-year investment and if the choice of rootstock (or variety) does not result in a productive orchard of marketable fruit for 20 years, there can be large economic penalties.

There are few tree fruit rootstock breeding programs in the world. Some focus on only a few horticultural traits, such as improved rooting or cold hardiness. However, the world apple community needs rootstock breeding programs to focus on multiple resistances to biotic and abiotic stresses, in addition to superior horticultural characteristics including high yield of premium-quality fruit. Such broad breeding objectives require a large team and many cooperators who will evaluate the rootstocks in different climates and soils. We predict that rootstock breeding programs with the vision of developing rootstocks with multiple resistances and superior horticultural performance will produce an increasing array of new valuable rootstocks over the next 30 years.

#### 10 References

- Adams, R. R. 2010. Increasing the Rooting in Apple Rootstock Stoolbeds, Horticulture. Cornell University, Ithaca, NY.
- Adams, S., Black, B. L., Fazio, G. and Roberts, N. A. 2017. The effect of plant growth regulators on apple graft union flexural strength and flexibility. *Journal of the American Pomological Society* 71, 8-18.
- Adams, S., Lordan, J., Fazio, G., Bugbee, B., Francescatto, P., Robinson, T. L. and Black, B. 2018. Effect of scion and graft type on transpiration, hydraulic resistance and xylem hormone profile of apples grafted on Geneva (R) 41 and M.9-NIC (TM) 29 rootstocks. *Scientia Horticulturae* 227, 213–22. doi:10.1016/j.scienta.2017.09.052.
- Aldwinckle, H. S., Cummins, J. N. and Gustafson, H. I. 1972. Resistance to *Phytophthora cactorum* in apple seedlings from controlled crosses. *Phytopathology* 62, 743-.
- Aldwinckle, H. S., LoGiudice, N., Robinson, T. L., Holleran, H. T., Fazio, G., Johnson, W. C. and Norelli, J. L. 2004. Resistance of apple rootstocks to fire blight infection caused by internal movement of Erwinia amylovora from scion infections. *Acta Horticulturae* 663(663), 229-34. doi:10.17660/ActaHortic.2004.663.36.
- Atkinson, C. J., Webster, A. D., Policarpo, M., Kuden, A., Ziraat Fakültesi, C. Ü. and Kappel, F. 1997. Drought sensitivity of apple rootstocks. *Acta Horticulturae* 451(451), 171–8. doi:10.17660/ActaHortic.1997.451.17.
- Atkinson, C. J., Policarpo, M., Webster, A. D. and Kingswell, G. 2000. Drought tolerance of clonal *Malus* determined from measurements of stomatal conductance and leaf water potential. *Tree Physiology* 20(8), 557-63. doi:10.1093/treephys/20.8.557.
- Atucha, A., Emmett, B. and Bauerle, T. L. 2013. Growth rate of fine root systems influences rootstock tolerance to replant disease. *Plant and Soil* 376(1-2), 337-46. doi:10.1007/s11104-013-1977-5.
- Autio, W. R., Robinson, T. L., Barritt, B. H., Cline, J. A., Crassweller, R. M., Embree, C. G., Ferree, D. C., Garcia, M. E., Greene, G. M., Hoover, E. E., Johnson, R. S., Kosola, K., Masabni, J., Parker, M. L., Perry, R. L., Reighard, G. L., Seeley, S. D. and Warmund, M. 2005. Performance of 'Fuji' and 'McIntosh' apple trees after 5 years as affected by several dwarf rootstocks in the 1999 NC-140 apple rootstock trial. *Journal of the American Pomological Society* 59, 202-14.
- Autio, W., Robinson, T., Archbold, D., Cowgill, W., Hampson, C., Quezada, R. P. and Wolfe, D. 2013. 'Gala' apple trees on supporter 4, P.14, and different strains of B.9, M.9 and M.26 rootstocks: final 10-year report on the 2002 NC-140 apple rootstock trial. *Journal American Pomological Society* 67, 62-71.
- Autio, W., Robinson, T., Black, B., Blatt, S., Cochran, D., Cowgill, W., Hampson, C., Hoover, E., Lang, G., Miller, D., Minas, I., Quezada, R. P. and Stasiak, M. 2017a. Budagovsky, Geneva, Pillnitz, and malling apple rootstocks affect 'Honeycrisp' performance over the first five years of the 2010 NC-140 'Honeycrisp' apple rootstock trial. *Journal of the American Pomological Society* 71, 149-66.
- Autio, W., Robinson, T., Black, B., Crassweller, R., Fallahi, E., Parker, M., Quezada, R. P. and Wolfe, D. 2017b. Budagovsky, Geneva, Pillnitz, and malling apple rootstocks affect 'Fuji' performance over the first five years of the 2010 NC-140 'Fuji' apple rootstock trial. *Journal of the American Pomological Society* 71, 167-82.
- Auvil, T. D., Schmidt, T. R., Hanrahan, I., Castillo, F., McFerson, J. R. and Fazio, G. 2011. Evaluation of dwarfing rootstocks in Washington apple replant sites. *Acta Horticulturae* 903(903), 265–71. doi:10.17660/ActaHortic.2011.903.33.

- Barden, J. A. 1995. Experience in Virginia with slender spindle, vertical axe, and central leader on several rootstocks with Delicious and Empire. *Compact Fruit Tree* 28, 9-11.
- Barritt, B. H., Konishi, B. S. and Dilley, M. A. 1995. Performance of three apple cultivars with 23 dwarfing rootstocks during 8 seasons in Washington. *Fruit Varieties Journal* 49, 158-70.
- Bassett, C. L., Glenn, D. M., Forsline, P. L., Wisniewski, M. E. and Farrell, R. E.. 2011. Characterizing water use efficiency and water deficit responses in apple (*Malus × domestica* Borkh. and *Malus sieversii* Ledeb.) M. Roem. *HortScience* 46(8), 1079-84. doi:10.21273/HORTSCI.46.8.1079.
- Bassett, C. L., Baldo, A. M., Moore, J. T., Jenkins, R. M., Soffe, D. S., Wisniewski, M. E., Norelli, J. L. and Farrell, R. E. 2014. Genes responding to water deficit in apple (*Malus × domestica Borkh.*) roots. *BMC Plant Biology* 14, 182. doi:10.1186/1471-2229-14-182.
- Bassuk, N. L. and Howard, B. H. 1980. Seasonal rooting changes in apple hardwood cuttings and their implications to nurserymen. *Combined Proceedings, International Plant Propagators' Society* 30, 289-93.
- Baugher, T. A., Marini, R., Schupp, J. R. and Watkins, C. B. 2017. Prediction of bitter pit in 'Honeycrisp' apples and best management implications. *Hortscience* 52(10), 1368-74. doi:10.21273/HORTSCI12266-17.
- Bergh, O. 1992. Apple rootstocks for high density plantings under South African conditions. *Deciduous Fruit Grower* 42, 369-73.
- Bessho, H. and Soejima, J. 1992. Apple rootstock breeding for disease resistance. Compact Fruit Tree 25, 65-72.
- Biggs, A. R. and Peck, G. M. 2015. Managing bitter pit in 'Honeycrisp' apples grown in the mid-Atlantic United States with foliar-applied calcium chloride and some alternatives. *HortTechnology* 25, 385-91. doi:10.21273/HORTTECH.25.3.385.
- Broggini, G. A. L., Kost, T., Fahrentrapp, J., Patocchi, A., Wohner, T., Flachowsky, H., Peil, A., Hanke, M. V. and Gessler, C. 2014a. FB-MR5 is an apple gene providing resistance to fire blight. *Acta Horticulturae*, 273-6. doi:10.17660/ActaHortic.2014.1056.46.
- Broggini, G. A. L., Wohner, T., Fahrentrapp, J., Kost, T. D., Flachowsky, H., Peil, A., Hanke, M. V., Richter, K., Patocchi, A. and Gessler, C. 2014b. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB\_MR5 CC-NBS-LRR resistance gene of *Malus* \* robusta 5. Plant Biotechnology Journal 12(6), 728–33. doi:10.1111/pbi.12177.
- Browne, G. T. and Mircetich, S. M. 1993. Relative resistance of thirteen apple rootstocks to three species of *Phytophthora*. *Phytopathology* 83(9), 744-9. doi:10.1094/Phyto-83-744.
- Bus, V. G. M., Chagne, D., Bassett, H. C. M., Bowatte, D., Calenge, F., Celton, J. -M., Durel, C. -E., Malone, M. T., Patocchi, A., Ranatunga, A. C., Rikkerink, E. H. A., Tustin, D. S., Zhou, J. and Gardiner, S. E. 2008. Genome mapping of three major resistance genes to woolly apple aphid (*Eriosoma lanigerum* Hausm.). *Tree Genetics and Genomes* 4(2), 223–36. doi:10.1007/s11295-007-0103-3.
- Carlson, R. F. 1974. Status and performance of 'M.26' rootstock. *Fruit Varieties Journal* 28, 71–2.
- Carlson, R. F. and Oh, S. D. 1975. Influence of interstem lengths of M.8 clone *Malus sylvestris* Mill. on growth, precocity, yield, and spacing of 2 apple cultivars. *Journal of the American Society for Horticultural Science* 100, 450-2.
- Carlson, R. F. and Perry, R. L. 1986. Mark, apple rootstock. HortScience 21(I), 165.

- Castillo, A., Cabrera, D., Rodriguez, P., Zoppolo, R. and Robinson, T. 2015. *In vitro* micropropagation of CG41 apple rootstock. *Acta Horticulturae* 1083(1083), 569-74. doi:10.17660/ActaHortic.2015.1083.76.
- Comai, M. and Widmann, L. 1972. The slender spindle method of growing golden delicious, and the time involved in pruning. *Esperienze e Ricerche, Stazione sperimentale Agraria Forestale di S. Michele all'Adige* 3, 37-56.
- Costante, J. F., Lord, W. J., Howard, D. and Connington, L. 1983. Influences of planting depth on growth, root suckering, and yield on interstem apple trees. *HortScience* 18, 913-5.
- Cowgill Jr., W. P., Autio, W. R., Hoover, E. E., Marini, R. P. and Domoto, P. A. 2017. NC-140 multi-state research project: improving economic and environmental sustainability in tree-fruit production through changes in rootstock use. *Journal of the American Pomological Society* 71, 34-46.
- Crassweller, R. M. and Smith, D. E. 2001. Early growth and yield of three apple cultivars grown on four training systems. *HortScience* 36, 461.
- Cummins, J. N. 1973. Systems for producing multiple-stock fruit trees in the nursery. *Plant Propagator* 19, 7-11.
- Cummins, J. N. and Aldwinckle, H. S. 1974. Breeding apple rootstocks. *HortScience* 9, 367-72.
- Cummins, J. N., Aldwinckle, H. S. and Janick, J. 1983. Breeding apple rootstocks. *Plant Breeding Reviews* 1, 294–394.
- Czynczyk, A. 1979. Effect of M 9, B 9 and M 26 rootstocks on growth, fruiting and frost resistance of apple trees. *Fruit Science Reports* 6, 143-52.
- Czynczyk, A. and Omiecinska, B. 1989. Effect of new rootstocks of Polish, Russian and Czechoslovakian breeds and two depths of planting of trees with interstems on growth and cropping of 3 apple cultivars. *Acta Horticulturae* 243(243), 71-8. doi:10.17660/ActaHortic.1989.243.7.
- Czynczyk, A. and Zagaja, S. W. 1984. Evaluation of growth and cropping of apple trees grafted on dwarf rootstocks and interstems. *Compact Fruit Tree* 17, 37-49.
- Domoto, P. A. 1982. The survival and performance of four cultivars on six dwarfing interstems. *Compact Fruit Tree* 15, 19-24.
- Dozier Jr., W. A., Latham, A. J., Kouskolekas, C. A. and Mayton, E. L. 1974. Susceptibility of certain apple rootstocks to black root rot and woolly apple aphids. *HortScience* 9, 35-6.
- Duan, N., Bai, Y., Sun, H., Wang, N., Ma, Y., Li, M., Wang, X., Jiao, C., Legall, N., Mao, L., Wan, S., Wang, K., He, T., Feng, S., Zhang, Z., Mao, Z., Shen, X., Chen, X., Jiang, Y., Wu, S., Yin, C., Ge, S., Yang, L., Jiang, S., Xu, H., Liu, J., Wang, D., Qu, C., Wang, Y., Zuo, W., Xiang, L., Liu, C., Zhang, D., Gao, Y., Xu, Y., Xu, K., Chao, T., Fazio, G., Shu, H., Zhong, G. Y., Cheng, L., Fei, Z. and Chen, X. 2017. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. *Nature Communications* 8(1), 249. doi:10.1038/s41467-017-00336-7.
- Dvorak, A. 1983. Cultural characteristics of the new J-TE series of apple rootstocks. In: *Progresivni Smery v Ovocnarske Vyrobe*. Vyzkumny a Slechtitelsky Ustav Ovocnarsky, Holovousy, Czechoslovakia, 117–33.
- Ebel, R. C., Proebsting, E. L. and Evans, R. G. 2001. Apple tree and fruit responses to early termination of irrigation in a semi-arid environment. *HortScience* 36(7), 1197–201. doi:10.21273/HORTSCI.36.7.1197.

- Elfving, D. C., Schecter, I. and Hutchinson, A. 1993. The history of the Vineland (V.) apple rootstocks. *Fruit Varieties Journal* 47, 52-8.
- Embree, C. G. 1985. The new KSC (Kentville stock clones) apple rootstock series their current and future use. *Compact Fruit Tree* 18, 34–8.
- Embree, C. G. and McRae, K. B. 1991. An exploratory-study of reciprocal apple rootstock and scion hardiness with 2 methods of assessment. *HortScience* 26(12), 1523–5. doi:10.21273/HORTSCI.26.12.1523.
- Fahrentrapp, J., Broggini, G. A. L., Gessler, C., Kellerhals, M., Peil, A., Malnoy, M. and Richter, K. 2013. Fine mapping of the fire blight resistance locus in *Malus \* robusta* 5 on linkage group 3. *Acta Horticulturae* 976(976), 499-500. doi:10.17660/ActaHortic.2013.976.70.
- Fallahi, E. and Mohan, S. K. 2000. Influence of nitrogen and rootstock on tree growth, precocity, fruit quality, leaf mineral nutrients, and fire blight in 'Scarlet Gala' apple. *HortTechnology* 10, 589-92.
- Fazio, G. and Robinson, T. L. 2008a. Modification of nursery tree architecture by apple rootstocks. *HortScience* 43, 1271-.
- Fazio, G. and Robinson, T. L. 2008b. Modification of nursery tree architecture with apple rootstocks: a breeding perspective. *New York Fruit Quarterly* 16, 13-6.
- Fazio, G., Wan, Y., Russo, N. L. and Aldwinckle, H. S. 2008. Investigation on the inheritance of strain specific resistance to *Erwinia amylovora* in an apple rootstock segregating population. *Acta Horticulturae* 793(793), 331–5. doi:10.17660/ ActaHortic.2008.793.49.
- Fazio, G., Kviklys, D., Grusak, M. A. and Robinson, T. L. 2012. Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks. *New York Fruit Quarterly* 20, 22-8.
- Fazio, G., Kviklys, A., Grusak, M. A. and Robinson, T. L. 2013. Phenotypic diversity and QTL mapping of absorption and translocation of nutrients by apple rootstocks. *Aspects of Applied Biology* 119, 37-50.
- Fazio, G., Wan, Y., Kviklys, D., Romero, L., Adams, R. R., Strickland, D. and Robinson, T. L. 2014. *Dw2*, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. *Journal of the American Society for Horticultural Science* 139(2), 87–98. doi:10.21273/JASHS.139.2.87.
- Fazio, G., Cheng, L., Grusak, M. A. and Robinson, T. L. 2015a. Apple rootstocks influence mineral nutrient concentration of leaves and fruit. *New York Fruit Quarterly* 25, 11–5.
- Fazio, G., Robinson, T. L. and Aldwinckle, H. S. 2015b. The Geneva apple rootstock breeding program. *Plant Breeding Reviews* 39, 379-424.
- Ferree, D. C. 1991. Results over ten years: NC-140 apple rootstock trial. *Compact Fruit Tree* 24, 5-6.
- Ferree, D. C. 1992. Ten-year summary of the performance of 9 rootstocks in the NC-140 trials. *Compact Fruit Tree* 25, 5-11.
- Ferree, D. C. and Perry, R. L. 1989. NC-140 rootstock trials in North America. *Acta Horticulturae* 243, 51-8. doi:10.17660/ActaHortic.1989.243.5.
- Ferree, D. C., Schmid, J. C. and Morrison, C. A. 1982. An evaluation over 16 years of Delicious strains and other cultivars on several rootstocks and hardy interstems. *Fruit Varieties Journal* 36, 37-45.
- Fischer, M., Barritt, B. H. and Kappel, F. 1997. Pillnitzer supporter 4 (Pi 80) a semi-dwarf apple rootstock from Dresden-Pillnitz. *Acta Horticulturae* 451(451), 99-104. doi:10.17660/ActaHortic.1997.451.7.

- Fischer, M. 1994. Results of the apple rootstock breeding programme obtained at Pillnitz. *Rivista di Frutticoltura e di Ortofloricoltura* 56, 17-21.
- Foster, T. M., Celton, J. M., Chagne, D., Tustin, D. S. and Gardiner, S. E. 2015. Two quantitative trait loci, *Dw1* and *Dw2*, are primarily responsible for rootstock-induced dwarfing in apple. *Horticulture Research* 2, 15001. doi:10.1038/hortres.2015.1.
- Foster, T. M., McAtee, P. A., Waite, C. N., Boldingh, H. L. and McGhie, T. K. 2017. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. *Horticulture Research* 4, 17009. doi:10.1038/hortres.2017.9.
- Fuchs, M., Kahke, C., Donahue, D., Wallis, A. and Basedow, M. 2018. Distribution of viruses in New York apple orchards. *Fruit Quarterly* 26, 5-9.
- Gao, H., Dang, Z., Li, D., Mei, L., Wan, Y., Wang, L., Zhao, Z. and Fazio, G. 2011. The history of apple breeding in People's Republic of China. *Acta Horticulturae* 903(903), 199-205. doi:10.17660/ActaHortic.2011.903.24.
- Gardiner, S. E., Norelli, J. L., de Silva, N., Fazio, G., Peil, A., Malnoy, M., Horner, M., Bowatte, D., Carlisle, C., Wiedow, C., Wan, Y. Z., Bassett, C. L., Baldo, A. M., Celton, J. M., Richter, K., Aldwinckle, H. S. and Bus, V. G. M. 2012. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in *Malus* 'robusta 5' accessions. *BMC Genetics* 13, 25. doi:10.1186/1471-2156-13-25.
- Gardner, R. G., Cummins, J. N. and Aldwinckle, H. S. 1980. Inheritance of fire blight resistance in *Malus* in relation to rootstock breeding. *Journal of the American Society for Horticultural Science* 105, 912-6.
- Geng, F., Moran, R., Day, M., Halteman, W. and Zhang, D. L. 2015. *In vitro* shoot proliferation of apple rootstocks 'B 9', 'G 30', and 'G 41' grown under red and blue light. *HortScience* 50(3), 430-3. doi:10.21273/HORTSCI.50.3.430.
- George, A. P. and Nissen, R. J. 1986. Growth, yield and scion-rootstock interaction effects of the custard apple in south-east Queensland. *Queensland Journal of Agricultural and Animal Sciences* 43, 73–81.
- Gharghani, A., Zamani, Z., Talaie, A., Fattahi, R., Hajnajari, H., Oraguzie, N. C., Wiedow, C. and Gardiner, S. E. 2010. The role of Iran (Persia) in apple (*Malus \* domestica* Borkh) domestication, evolution and migration via the Silk Trade Route. *Acta Horticulturae*, 229-36. doi:10.17660/ActaHortic.2010.859.26.
- Glenn, D. M. 2014. An analysis of ash and isotopic carbon discrimination (Δ13C) methods to evaluate water use efficiency in apple. *Scientia Horticulturae* 171, 32-6. doi:10.1016/j.scienta.2014.03.031.
- Hafiz, I. A., Abbasi, N. A., Ahmad, T. and Hussain, A. 2008. DNA methylation profiles differ between juvenile and adult phase leaves of crab apple (*Malus micromalus*) seedling tree. *Pakistan Journal of Botany* 40, 1025-32.
- Hampson, C. R. 2012. The performance of four Vineland apple rootstocks in British Columbia, Canada. *Journal of the American Pomological Society* 66, 23-7.
- Hampson, C. R., Quamme, H. A. and Brownlee, R. T. 2002. Canopy growth, yield, and fruit quality of 'Royal Gala' apple trees grown for eight years in five tree training systems. *HortScience* 37(4), 627-31. doi:10.21273/HORTSCI.37.4.627.
- Hampson, C. R., Randall, P. and Sholberg, P. 2012. Tolerance of Vineland apple rootstocks to waterlogging and *Phytophthora* infestation. *Canadian Journal of Plant Science* 92(2), 267–9. doi:10.4141/cjps2011-132.
- Harrison, N., Harrison, R. J., Barber-Perez, N., Cascant-Lopez, E., Cobo-Medina, M., Lipska, M., Conde-Ruiz, R., Brain, P., Gregory, P. J. and Fernandez-Fernandez, F. 2016. A new

- three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. *Journal of Experimental Botany* 67(6), 1871-81. doi:10.1093/jxb/erw001.
- Hartmann, H. T., Kester, D. E., Davies, F. T. and Geneve, R. L. 1997. *Plant Propagation: Principles and Practices*. Prentice-Hall Inc., Upper Saddle River.
- Hatton, R. G. 1917. Paradise apple stocks. *Journal of the Royal Horticultural Society* 42, 361-99.
- Hatton, R. G. 1919. Paradise apple stocks their fruit and blossom described. *Journal of the Royal Horticultural Society* 44, 89-94.
- Hatton, R. G. 1920. Suggestion for the right selection of apple stocks. *Journal of the Royal Horticultural Society* 45, 257-68.
- Heinicke, D. R. 1975. High density apple orchards planning training and pruning. *US Department of Agriculture Agriculture Handbook*, pp. 1-34.
- Hulko, I. P., Hulko, B. I. and Sadowski, A. 1999. Results of study of clonal apple rootstocks in stoolbeds and in nursery, Apple rootstocks for intensive orchards. In: *Proceedings of the International Seminar*, Warsaw Ursynow, Poland, 18-21 August 1999. Warsaw Agricultural University Department of Pomology, Warsaw, Poland, pp. 41-2.
- Isutsa, D. K. and Merwin, I. A. 2000. *Malus* germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. *HortScience* 35(2), 262-8. doi:10.21273/HORTSCI.35.2.262.
- James, D. J. and Thurbon, I. J. 1979. Rapid *in vitro* rooting of the apple rootstock M.9. Journal of Horticultural Science 54(4), 309-11. doi:10.1080/00221589.1979.1151 4887.
- Jensen, P. J., Halbrendt, N., Fazio, G., Makalowska, I., Altman, N., Praul, C., Maximova, S. N., Ngugi, H. K., Crassweller, R. M., Travis, J. W. and McNellis, T. W. 2012. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics 13, 9. doi:10.1186/1471-2164-13-9.
- Jensen, P. J., Rytter, J., Detwiler, E. A., Travis, J. W. and McNellis, T. W. 2003. Rootstock effects on gene expression and fire blight resistance in apple. *Phytopathology* 93, S40.
- Jensen, P. J., McNellis, T. W., Halbrendt, N., Travis, J. W., Altman, N., Praul, C. A., Maximova, S. N., Crassweller, R. M. and Makalowska, I. 2011. Rootstock-regulated gene expression profiling in apple trees reveals genes whose expression levels are associated with fire blight resistance. *Acta Horticulturae* 903(903), 87-93. doi:10.17660/ActaHortic.2011.903.7.
- Jin, W., Zhang, Q., Liu, S., Wei, Q., Jin, W., Cheng, Z., Xue, X. and Yang, T. 2012. Genetic diversity of 41 apple rootstocks based on simple sequence repeat markers. *Journal* of the American Society for Horticultural Science 137(1), 51-6. doi:10.21273/ JASHS.137.1.51.
- Johnson, S., Andersen, R., Autio, W., Beckman, T., Black, B., Byers, P., Cline, J., Chavez-Gonzalez, C., Cowgill, W., Godin, R., Greene, G., Kaps, M., Kamas, J., Larsen, H., Lindstrom, T., Miller, D., Newell, M., Ophardt, D., Ouellette, D., Parra-Quezada, R., Pokharel, R., Reighard, G., Robinson, T., Schupp, J., Stein, L., Taylor, K., Walsh, C., Ward, D., Warmund, M. and Whiting, M. 2011. Performance of the 2002 NC-140 cooperative peach rootstock planting. *Journal of the American Pomological Society* 65, 17-25.

- Khanizadeh, S., Groleau, Y., Levasseur, A., Granger, R., Rousselle, G. L. and Davidson, C. 2005. Development and evaluation of St Jean-Morden apple rootstock series. *HortScience* 40, 521-2.
- Koike, H. and Tsukahara, K. 1988. Various interstem effects in combination with 'Marubakaido N-1' rootstock on 'Fuji' apple growth. *HortScience* 23, 580-1.
- Kost, T. D., Gessler, C., Jansch, M., Flachowsky, H., Patocchi, A. and Broggini, G. A. 2015. Development of the first cisgenic apple with increased resistance to fire blight. *PLoS ONE* 10(12), e0143980. doi:10.1371/journal.pone.0143980.
- Kotoda, N., Iwanami, H., Takahashi, S. and Abe, K. 2006. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. *Journal of the American Society for Horticultural Science* 131(1), 74–81. doi:10.21273/JASHS.131.1.74.
- Kuldoshin, I. A. and Sadowski, A. 1999. Perspective clonal rootstocks for intensive orchards in the central areas of Russia, apple rootstocks for intensive orchards. In: *Proceedings of the International Seminar*, Ursynow, Warsaw, Poland, 18-21 August 1999. Warsaw Agricultural University Department of Pomology, Warsaw, Poland, pp. 63-4.
- Kviklys, D. 2011. Fruit rootstock research in Europe performed by EUFRIN Rootstock group. *Acta Horticulturae* 903(903), 349-53. doi:10.17660/ActaHortic.2011.903.45.
- Kwon, S., Kim, K., Kim, H., Kim, M., Kwon, S. I., Kim, K. R., Kim, H. Y. and Kim, M. J. 1999. Effects of various combined-treatment by some growth regulators, sugars and inorganic materials with IBA on rooting in hardwood cuttings of apple rootstock M.26 (Malus domestica Bork.). Journal of the Korean Society for Horticultural Science 40, 447-50.
- Larsen, F. E. 1976. Budding and grafting with polyethylene strips. *Plant Propagator* 22, 10-1.
- Lauri, P. E. and Lespinasse, J. M. 2001. Genotype of apple trees affects growth and fruiting responses to shoot bending at various times of year. *Journal of the American Society for Horticultural Science* 126(2), 169-74. doi:10.21273/JASHS.126.2.169.
- Leinfelder, M. M. and Merwin, I. A. 2006. Rootstock selection, preplant soil treatments, and tree planting positions as factors in managing apple replant disease. *HortScience* 41(2), 394-401. doi:10.21273/HORTSCI.41.2.394.
- Leisso, R., Rudell, D. and Mazzola, M. 2017. Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings. Soil Biology and Biochemistry 113, 201-14. doi:10.1016/j. soilbio.2017.06.011.
- Leisso, R., Rudell, D. and Mazzola, M. 2018. Targeted metabolic profiling indicates apple rootstock genotype-specific differences in primary and secondary metabolite production and validate quantitative contribution from vegetative growth. *Frontiers in Plant Science* 9, 1336. doi:10.3389/fpls.2018.01336.
- Lindley, J. (Ed.). 1828. The Pomological Magazine; Or, Figures and Descriptions of the Most Important Varieties of Fruit Cultivated in Great Britain. J. Ridgway, London.
- Lo Bianco, R., Talluto, G. and Farina, V. 2012. Effects of partial rootzone drying and rootstock vigour on dry matter partitioning of apple trees (*Malus domestica* cvar Pink Lady). *The Journal of Agricultural Science* 150(1), 75-86. doi:10.1017/S0021859611000463.
- Lockard, R. G. 1976. Effect of apple rootstocks and length and type of interstock on leaf nutrient levels. *Journal of Horticultural Science* 51(2), 289-96. doi:10.1080/002215 89.1976.11514692.

- LoGiudice, N., Aldwinckle, H. S., Robinson, T. L. and Fazio, G. 2006. The nature of resistance of the 'B.9' apple rootstock to fire blight. *Acta Horticulturae (Wageningen)* 704, 515-9.
- Lord, W. J. 1983. Scion/rootstock and interstem effects on growth, nutrition, and fruiting of apple trees and on fruit quality. *Compact Fruit Tree* 16, 65-9.
- Lordan, J., Fazio, G., Francescatto, P. and Robinson, T. 2017. Effects of apple (*Males × domestica*) rootstocks on scion performance and hormone concentration. *Scientia Horticulturae (Amsterdam)* 225, 96-105.
- Lordan, J., Francescatto, P., Dominguez, L. I. and Robinson, T. L. 2018a. Long-term effects of tree density and tree shape on apple orchard performance, a 20 year study-Part 1, agronomic analysis. *Scientia Horticulturae* 238, 303–17. doi:10.1016/j. scienta.2018.04.033.
- Lordan, J., Wallis, A., Francescatto, P. and Robinson, T. L. 2018b. Long-term effects of training systems and rootstocks on 'McIntosh' and 'Honeycrisp' performance, a 20-year study in a northern cold climate-part 2: economic analysis. *HortScience* 53(7), 978–92. doi:10.21273/HORTSCI13117-18.
- Loudon, J. C. 1822. An Encyclopædia of Gardening.
- Ma, R., Huang, Y., Sha, G., Shi, Y., Li, J., Gong, X., Li, M., Ma, R. Q., Huang, Y., Sha, G. L., Shi, Y. J., Li, J., Gong, X. H. and Li, M. 2012. Identifying hybrids of apomictic apple rootstocks with SSR and flow cytometry. *Journal of Fruit Science* 29, 461–5.
- Ma, L., Hou, C. W., Zhang, X. Z., Li, H. L., Han, D. G., Wang, Y., Han, Z. H. 2013. Seasonal growth and spatial distribution of apple tree roots on different rootstocks or interstems. *Journal of the American Society for Horticultural Science* 138(2), 79–87. doi:10.21273/JASHS.138.2.79.
- Macedo, T. A., Sander, G. F., Michelon, M. F., Carminatti, J. F., Rufato, A. R., Rufato, L. and Robinson, T. L. 2018. Chilling requirement and budburst uniformity of cultivar 'Maxi Gala' grafted on different rootstocks. *Acta Horticulturae* 1228(1228), 241–6. doi:10.17660/ActaHortic.2018.1228.36.
- Marini, R. P., Parker, M. L., Barden, J. A. and Unrath, C. R. 2003. The effect of eight dwarf rootstocks on burrknot development on 'Gala' apple trees at two locations. *Journal of the American Pomological Society* 57, 93-6.
- Marini, R. P., Anderson, J. L., Autio, W. R., Barritt, B. H., Cline, J., Cowgill, W. P., Jr., Crassweller, R. C., Garner, R. M., Gauss, A., Godin, R., Greene, G. M., Hampson, C., Hirst, P., Kushad, M. M., Masabni, J., Mielke, E., Moran, R., Mullins, C. A., Parker, M., Perry, R. L., Prive, J. P., Reighard, G. L., Robinson, T., Rom, C. R., Roper, T. and Schupp, J. R. 2006. Performance of 'Gala' apple trees on 18 dwarfing rootstocks: ten-year summary of the 1994 NC-140 rootstock trial. *Journal of the American Pomological Society* 60, 69-83.
- Mazilu, C., Viscol, I. I. and Sadowski, A. 1999. A Romanian apple rootstock for intensive orchards, apple rootstocks for intensive orchards. In: *Proceedings of the International Seminar*, Ursynow, Warsaw, Poland, 18-21 August 1999. Warsaw Agricultural University Department of Pomology, Warsaw, Poland, pp. 73-4.
- Mazzola, M. 1998. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. *Phytopathology* 88(9), 930-8. doi:10.1094/PHYTO.1998.88.9.930.
- Mazzola, M., Brown, J. and Fazio, G. 2009a. Interaction of Brassicaceous seed meal and rootstock on recovery of *Pratylenchus penetrans* from roots of apple grown in replant orchard soils. *Journal of Nematology* 41, 354.

- Mazzola, M., Brown, J., Zhao, X., Izzo, A. D. and Fazio, G. 2009b. Interaction of Brassicaceous seed meal and apple rootstock on recovery of *Pythium* spp. and *Pratylenchus penetrans* from roots grown in replant soils. *Plant Disease* 93(1), 51-7. doi:10.1094/PDIS-93-1-0051.
- McKenzie, D. W. 1964. Apple rootstock trials Jonathan on East Mailing, Merton and Malling-Merton rootstocks. *Journal of Horticultural Science* 39(2), 69-77. doi:10.108 0/00221589.1964.11514092.
- McKenzie, D. W. 1985. Apple rootstock trials cultivar golden-delicious on 8 semi-dwarfing rootstocks in Hawkes Bay New-Zealand. *Journal of Horticultural Science* 60(1), 7-11. doi:10.1080/14620316.1985.11515593.
- Midgley, S. J. E. and Lotze, E. 2011. Climate change in the Western Cape of South Africa: trends, projections and implications for chill unit accumulation. *Acta Horticulturae* 903(903), 1127-34. doi:10.17660/ActaHortic.2011.903.157.
- Moran, R. E., Sun, Y. P., Geng, F., Zhang, D. L. and Fazio, G. 2011a. Cold temperature tolerance of trunk and root tissues in one- or two-year-old apple rootstocks. *HortScience* 46(11), 1460-4. doi:10.21273/HORTSCI.46.11.1460.
- Moran, R. E., Zhang, D. and Sun, Y. 2011b. Cold temperature tolerance of G.16 and G.935 apple roots. *Acta Horticulturae* 903, 289-93.
- Moran, R. E., Peterson, B. J., Fazio, G. and Cline, J. 2018. Genotypic variation in apple rootstock low temperature tolerance during spring and fall. *Journal of the American Society for Horticultural Science* 143(5), 319–32. doi:10.21273/JASHS04470-18.
- Nelson, S. H. and Tukey, H. B. 1955. Root temperature affects the performance of East Malling apple rootstocks. *Quarterly Bulletin. Michigan State University Agricultural Experiment Station* 38, 46-51.
- Norelli, J., Aldwinckle, H., Momol, T., Johnson, B., DeMarree, A. and Reddy, M. V. B. 2001. Fire blight of apple rootstocks. *Compact Fruit Tree* 34, 12-5.
- Norelli, J. L., Holleran, H. T., Johnson, W. C., Robinson, T. L. and Aldwinckle, H. S. 2003. Resistance of Geneva and other apple rootstocks to *Erwinia amylovora*. *Plant Dis*. 87(1), 26-32. doi:10.1094/PDIS.2003.87.1.26.
- Olien, W. C. and Lakso, A. N. 1986. Effect of rootstock on apple (*Malus domestica*) tree water relations. *Physiologia Plantarum* 67(3), 421–30. doi:10.1111/j.1399-3054.1986. tb05757.x.
- Palmer, J. W. 2011. Changing concepts of efficiency in orchard systems. *Acta Horticulturae* 903(903), 41-9. doi:10.17660/ActaHortic.2011.903.1.
- Palmer, J. W., Sansavini, S., Winter, F., Bünemann, C. and Wagenmakers, P. S. 1989. The international planting systems trial. *Acta Horticulturae* 243(243), 231-42. doi:10.17660/ActaHortic.1989.243.29.
- Parker, M. L., Hoyt, T. and Clark, B. 2014. Evaluating apple replant strategies in the southeastern United States. *Acta Horticulturae* 1058(1058), 645-50. doi:10.17660/ActaHortic.2014.1058.84.
- Peryea, F. J. and Covey, R. P. 1989. Replant management strategies influence early growth of apple trees in a sand soil. *HortScience* 24, 947-9.
- Preston, A. P. 1953. Five new apple rootstocks. Ann. Rept. East Malling Res. Sta. for 1952, pp. 169-70.
- Preston, A. P. 1955. Apple rootstock studies: malling-Merton rootstocks. *Journal of Horticultural Science* 30(1), 25–33. doi:10.1080/00221589.1955.11513825.
- Preston, A. P. 1956. The control of fruitfulness behaviour by the use of rootstocks. *Annals of Applied Biology* 44(3), 511-7. doi:10.1111/j.1744-7348.1956.tb02146.x.

- Preston, A. P. 1966. Apple rootstock studies: fifteen years' results with Malling-Merton clones. *Journal of Horticultural Science* 41(4), 349-60. doi:10.1080/00221589.196 6.11514181.
- Preston, A. P. 1967. Apple rootstock studies: fifteen years' results with some M.IX crosses. *Journal of Horticultural Science* 42(1), 41–50. doi:10.1080/00221589.1967.11514191.
- Preston, A. P., 1974. Apple rootstock studies: some rootstock and interstock comparisons. *Horticultural Research* 14:47–53.
- Preston, A. P. and Belcher, D. E. 1982. Apple rootstock studies: Bramley's Seedling on dwarfing clones. *Experimental Horticulture* 32, 18-24.
- Prive, J. P., Zhang, M. I. N., Embree, C. G., Hebb, D., Palmer, J. W. and Wunsche, J. N. 2001. The influence of freeze-thaw cycling in cold hardiness studies on apple rootstocks. *Acta Horticulturae* 557(557), 123–30. doi:10.17660/ActaHortic.2001.557.15.
- Proctor, J. T. A., A. Hutchinson, and W. F. Pierce, 1974. A 10-year trial of seven apple cultivars on Malling 26 rootstock. *Canadian Journal of Plant Science* 54:661-5.
- Quamme, H. A. 1990. Cold hardiness of apple rootstocks. Compact Fruit Tree 23, 11-6.
- Quamme, H. A. and Hogue, E. J. 1994. Improved rooting of Ottawa 3 apple rootstock by soft wood cuttings using micropropagated plants as a cutting source. *Fruit Varieties Journal* 48, 170-3.
- Quamme, H. A., Brownlee, R. T., Barritt, B. H. and Kappel, F. 1997. Cold hardiness evaluation of apple rootstocks. *Acta Horticulturae* 451(451), 187-94. doi:10.17660/ActaHortic.1997.451.19.
- Racsko, J., Miller, D. D., Midgley, S. J. E., Lakatos, L., Soltesz, M., Szabo, Z., Nyeki, J. and Costa, C. 2011. Influence of cultivars and rootstocks on the incidence of sunburn damage on apple fruit in the Northern and Southern Hemispheres. *Acta Horticulturae* 903(903), 1041–8. doi:10.17660/ActaHortic.2011.903.145.
- Rehkugler, G. E., Cummins, J. N. and Markwardt, E. D. 1979. Rupture strength of unions of 'Golden Delicious' apple with Malling 8, Malling 9, and vigorous rootstocks. *Journal of the American Society for Horticultural Science* 104, 226-9.
- Reig, G., Lordan, J., Fazio, G., Grusak, M. A., Hoying, S., Cheng, L. L., Francescatto, P. and Robinson, T. 2018. Horticultural performance and elemental nutrient concentrations on 'Fuji' grafted on apple rootstocks under New York State climatic conditions. *Scientia Horticulturae* 227, 22–37. doi:10.1016/j.scienta.2017.07.002.
- Reig, G., Lordan, J., Sazo, M. M., Hoying, S., Fargione, M., Reginato, G., Donahue, D. J., Francescatto, P., Fazio, G. and Robinson, T. 2019. Long-term performance of 'Gala', Fuji' and 'Honeycrisp' apple trees grafted on Geneva (R) rootstocks and trained to four production systems under New York State climatic conditions. *Scientia Horticulturae (Amsterdam)* 244, 277–93.
- Rioux, J. A., Lemattre, P., Parcevaux, S. D. and De Parcevaux, S. 1984. *In vitro* propagation of apple rootstock Ottawa 3. *Quebec Vert.* 6, 22–7.
- Robinson, T. 2011. Advances in apple culture worldwide. *Revista Brasileira De Fruticultura* 33(spe1), 37-47. doi:10.1590/S0100-29452011000500006.
- Robinson, T. L., Lakso, A. N. and Carpenter, S. G. 1991a. Canopy development yield and fruit quality of empire and delicious apple trees grown in four orchard production systems for ten years. *Journal of the American Society for Horticultural Science* 116(2), 179-87. doi:10.21273/JASHS.116.2.179.
- Robinson, T. L., Lakso, A. N. and Ren, Z. B. 1991b. Modifying apple tree canopies for improved production efficiency. *HortScience* 26(8), 1005-12. doi:10.21273/HORTSCI.26.8.1005.

- Robinson, T. L., Cummins, J. N., Hoying, S. A., Smith, W. H., Barritt, B. H. and Kappel, F. 1997. Commercial orchard evaluation of the new Cornell-Geneva apple rootstocks. *Acta Horticulturae* 451(451), 113–20. doi:10.17660/ActaHortic.1997.451.9.
- Robinson, T., Aldwinckle, H., Fazio, G., Holleran, T. and Janick, J. 2003. The Geneva series of apple rootstocks from Cornell: performance, disease resistance, and commercialization. *Acta Horticulturae* 622(622), 513–20. doi:10.17660/ActaHortic.2003.622.56.
- Robinson, T. L., Fazio, G., Aldwinckle, H. S., Hoying, S. A. and Russo, N. 2006. Field performance of Geneva apple rootstocks in the Eastern USA. *Sodininkyste-ir-Darzininkyste* 25, 181-91.
- Rom, C. R. and Rom, R. C. 1991. Rootstock effects on foliar nutrient content of 'Starkspur Supreme' in the NC-140 rootstock trials. *Compact Fruit Tree* 24, 11-4.
- Rogers, W. S. and Beakbane, A. B. 1957. Stock and scion relations. *Annual Review of Plant Biology* 8(1), 217-36. doi:10.1146/annurev.pp.08.060157.001245.
- Rong, Z., Yi, K., Yang, F., Liu, Z., Li, X., Wan, D. and Wan, Y. 2011. A dwarfing apple rootstock: 'Liaozhen 2'. *Acta Horticulturae* 903(903), 169-76. doi:10.17660/ActaHortic.2011.903.17.
- Rosenberger, D. A., Schupp, J. R., Hoying, S. A., Cheng, L. and Watkins, C. B. 2004. Controlling bitter pit in 'Honeycrisp' apples. *HortTechnology* 14, 342–9. doi:10.21273/HORTTECH.14.3.0342.
- Rufato, L., Kretzschmar, A. A., Brighenti, A. F., Macedo, T. A., Mendes, M. and Silva, L. C. 2010. Bud break in different cultivars of apple trees in two regions of Santa Catarina State, Brazil. Acta Horticulturae 884(884), 643-6. doi:10.17660/ ActaHortic.2010.884.85.
- Rumberger, A., Merwin, I. A. and Thies, J. E. 2007. Microbial community development in the rhizosphere of apple trees at a replant disease site. *Soil Biology and Biochemistry* 39(7), 1645-54. doi:10.1016/j.soilbio.2007.01.023.
- Rumberger, A., Yao, S. R., Merwin, I. A., Nelson, E. B. and Thies, J. E. 2004. Rootstock genotype and orchard replant position rather than soil fumigation or compost amendment determine tree growth and rhizosphere bacterial community composition in an apple replant soil. *Plant and Soil* 264(1/2), 247-60. doi:10.1023/B:PLSO.0000047760.13004.94.
- Russo, N. L., Robinson, T. L., Fazio, G. and Aldwinckle, H. S. 2007. Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. *Hortscience* 42(7), 1517-25. doi:10.21273/HORTSCI.42.7.1517.
- Russo, N. L., Aldwinckle, H. S., Robinson, T. L. and Fazio, G. 2008a. Budagovsky 9 rootstock: uncovering a novel resistance to fire blight. *Acta Horticulturae*, 321-4. doi:10.17660/ActaHortic.2008.793.47.
- Russo, N. L., Robinson, T. L., Fazio, G. and Aldwinckle, H. S. 2008b. Fire blight resistance of Budagovsky 9 apple rootstock. *Plant Disease* 92(3), 385-91. doi:10.1094/PDIS-92-3-0385.
- Sansavini, S. and Musacchi, S. 2000. New pear orchards: densities, rootstocks, training systems. *Rivista di Frutticoltura e di Ortofloricoltura* 62(84-94), 12.
- Sansavini, S., Bassi, D. and Giunchi, L. 1981. Tree efficiency and fruit quality in high-density apple orchards. *Acta Horticulturae* 114(114), 114-36. doi:10.17660/ActaHortic.1981.114.13.
- Sax, K. 1949. The use of Malus species for apple rootstocks. Proceedings of the American Society for Horticultural Science 53, 219-20.

- Schlatholter, I., Jansch, M., Flachowsky, H., Broggini, G. A. L., Hanke, M. V. and Patocchi, A. 2018. Generation of advanced fire blight-resistant apple (*Malus* × *domestica*) selections of the fifth generation within 7 years of applying the early flowering approach. *Planta* 247(6), 1475–88. doi:10.1007/s00425-018-2876-z.
- Schmidt, H. 1986. Ways of shortening the juvenile period of apples. *Erwerbsobstbau* 28, 6–7.
- Schouten, H. J., Soriano, J. M., Joshi, S. G., Kortstee, A. J., Krens, F. A., Schaart, J. G., van der Linden, K., Allan, A. C., Hellens, R. P., Espley, R. V. and Jacobsen, E. 2009. Cisgenesis is a promising approach for fast, acceptable and safe breeding of pip fruit. *Acta Horticulturae* 814(814), 199-204. doi:10.17660/ActaHortic.2009.814.26.
- Sha, G. L., Gong, X. H., Huang, Y., Shao, Y. C., Yin, T., Hao, Y. J. and Shu, H. R. 2011. 'Qingzhen 1' and 'Qingzhen 2', two apple rootstocks with high apomitic fruit setting ability. *Acta Horticulturae* 903, 159-62.
- Spangelo, L. P. S., Fejer, S. O., Leuty, S. J. and Granger, R. L. 1974. Ottawa 3 clonal apple rootstock. *Canadian Journal of Plant Science* 54(3), 601-3. doi:10.4141/cjps74-107.
- Strong, D. and Azarenko, A. N. 2000. Relationship between trunk cross-sectional area, harvest index, total tree dry weight and yield components of 'Starkspur Supreme Delicious' apple trees. *Journal of American Pomological Society* 54, 22–7.
- Strong, D. and Miller Azarenko, A. 1991. Dry matter partitioning in 'Starkspur Supreme Delicious' on nine rootstocks. *Fruit Varieties Journal* 45, 238-41.
- Sun, W. Q. and Bassuk, N. L. 1991. Stem banding enhances rooting and subsequent growth of M.9 and MM.106 apple rootstock cuttings. *HortScience* 26(11), 1368–70. doi:10.21273/HORTSCI.26.11.1368.
- Tamai, H., Ono, T., Koike, H. and Shigehara, I. 2002. Comparison of growth, yield efficiency and fruit quality between 'Fuji' on M.9Nagano rootstock and 'Fuji' on M.9Nagano (interstock)/Marubakaido (*Malus prunifolia* Bork. var. ringo Asami) under high density planting. *Journal of the Japanese Society for Horticultural Science* 71, 670-4.
- Tamai, H., Komatsu, H., Koike, H., Ono, T. and Shigehara, I. 2003. Performance of 'Rakuraku Fuji' apple trees on JM.7 and M.9Nagano rootstocks, and M.9 Nagano/Marubakaido interstem combination in Japan. *Journal of American Pomological Society* 57, 157-60.
- Travis, J. W. and Rytter, J. L. 1995. The development of fire blight and black rot on MARK and EMLA 7 rootstocks. *Pennsylvania Fruit News* 75, 35-6.
- Travis, J. W., Rytter, J. L., Hickey, K. D., Momol, M. T. and Saygili, H. 1999. The susceptibility of apple rootstocks and cultivars to *Erwinia amylovora*. *Acta Horticulturae* 489(489), 235–42. doi:10.17660/ActaHortic.1999.489.37.
- Tsuchiya, S. 1988. Breeding of dwarfing rootstocks for fruit trees. *Research Journal of Food and Agriculture* 11, 3-11.
- Tukey, H. B. 1964. Dwarfed Fruit Trees, for Orchard, Garden and Home. Macmillan, New York
- Tukey, H. B. 1978. Dwarfed Fruit Trees for Orchard, Garden, and Home: With Special Reference to the Control of Tree Size and Fruiting in Commercial Fruit Production. Cornell University Press, Ithaca, NY.
- Tukey, R. B., Langston, R. and Cline, R. A. 1962. Influence of rootstock, bodystock and interstock on the nutrient content of apple foliage. *Proceedings of the American Society for Horticultural Science* 80, 73-8.
- Tustin, D. S. and Cashmore, W. M. 1994. Rootstock and spacing effects on precocity, yield and fruit quality of 'Fuji' apple using slender pyramid tree management. *Compact Fruit Tree* 27, 60-8.

- Tustin, D. S., Hirst, P. M., Cashmore, W. M., Warrington, I. J., Stanley, C. J., Erez, A. and Jackson, J. E. 1993. Spacing and rootstock studies with central leader apple canopies in a high vigour environment. *Acta Horticulturae*, 169-78. doi:10.17660/ActaHortic.1993.349.26.
- Tuttle, M. A. and Gotlieb, A. R. 1985. Graft Union histology and distribution of tomato ringspot virus in infected McIntosh/Malling Merton 106 apple trees. *Phytopathology* 75(3), 347–51. doi:10.1094/Phyto-75-347.
- Tworkoski, T. and Fazio, G. 2011. Physiological and morphological effects of size-controlling rootstocks on 'Fuji' apple scions. *Acta Horticulturae* 903(903), 865-72. doi:10.17660/ActaHortic.2011.903.120.
- Tworkoski, T., Fazio, G. and Glenn, D. M. 2016. Apple rootstock resistance to drought. *Scientia Horticulturae* 204, 70-8. doi:10.1016/j.scienta.2016.01.047.
- Van Hooijdonk, B. M., Woolley, D. J., Warrington, I. J. and Tustin, D. S. 2010. Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin. *The Journal of Horticultural Science and Biotechnology* 85(1), 59-65. doi:10.1080/14620316.2010.11512631.
- Van Oosten, H. J. V. 1977. The new apple rootstock M.27. (2) M.27 in the nursery. *Fruitteelt* 67, 402-5.
- Van Oosten, H. J. V. and Groene, J. M. D. 1984. Differences between sources of M.9. 3. The fruit tree nursery. *Fruitteelt* 74, 968-9.
- Villeneuve, F. 1986. Burr-knots, their development and methods of control. *Arboriculture Fruitiere* 33, 44-8.
- Visser, T. and Schaap, A. A. 1967. Preselection for juvenile period, flowering and picking time in apple seedlings. *Euphytica* 16(1), 109-21. doi:10.1007/BF00034104.
- Wan, Y., Li, D., Zhao, Z., Mei, L., Han, M., Schwaninger, H. and Fazio, G. 2011. The distribution of wild apple germplasm in Northwest China and its potential application for apple rootstock breeding. *Acta Horticulturae* 903(903), 123-41. doi:10.17660/ActaHortic.2011.903.12.
- Warmund, M. R., Barritt, B. H., Brown, J. M., Schaffer, K. L. and Jeong, B. R. 1993. Detection of vascular discontinuity in bud unions of 'Jonagold' apple on Mark rootstock with magnetic resonance imaging. *Journal of the American Society for Horticultural Science* 118(1), 92-6. doi:10.21273/JASHS.118.1.92.
- Webster, A. D. and Hollands, M. 1999. Orchard comparisons of 'Cox's Orange Pippin' grown on selections of the apple rootstock M.9. *Journal of Horticultural Science and Biotechnology* 74(4), 513–21. doi:10.1080/14620316.1999.11511145.
- Webster, C. A. and Jones, O. P. 1989. Micropropagation of the apple rootstock M.9: effect of sustained subculture on apparent rejuvenation *in vitro*. *Journal of Horticultural Science* 64(4), 421–8. doi:10.1080/14620316.1989.11515973.
- Webster, T. and Tobutt, K. 1994. European and East Malling rootstock research new and promising apple rootstocks. *Compact Fruit Tree* 27, 17-24.
- Wen, T., Dong, L., Wang, L., Ma, F., Zou, Y. and Li, C. 2018. Changes in root architecture and endogenous hormone levels in two *Malus* rootstocks under alkali stress. *Scientia Horticulturae* 235, 198-204. doi:10.1016/j.scienta.2017.09.015.
- Wertheim, S. J. 1978. Pruning of slender spindle type trees. *Acta Horticulturae* 65(65), 173-80. doi:10.17660/ActaHortic.1978.65.26.
- Wertheim, S. J. 1981. High density planting development and current achievements in the Netherlands Belgium and West Germany. *Acta Horticulturae* 114(114), 318–30. doi:10.17660/ActaHortic.1981.114.44.

- Wertheim, S. J. and Callesen, O. 2000. Results of multi-site interstem trials with apple trees. *Gartenbauwissenschaft* 65, 251-9.
- Wertheim, S. J. and Scholtens, A. 1994. Trial results with M.27 as rootstock and interstock. M.27 can be used as an interstock. *Fruitteelt Den Haag* 84, 11-3.
- Wohner, T., Hanke, M. V., Flachowsky, H., Peil, A., Richter, K. and Broggini, G. A. L. 2014. Investigation on fire blight resistance in the cross population 'Idared' \* *Malus* \* *robusta* 5 with different Erwinia amylovora strains. *Acta Horticulturae* 1056, 277-80.
- Yao, Z., Bi, X., Gao, L., Wang, W., Yao, Z. Z., Bi, X. M., Gao, L. X. and Wang, W. S. 2001. The performance of the apple dwarf rootstock GM-256 in Mengluan area, Hebei Province. *China Fruits* 3, 12-5.
- Yao, S. R., Merwin, I. A., Abawi, G. S. and Thies, J. E. 2006. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. *Soil Biology and Biochemistry* 38(3), 587–99. doi:10.1016/j.soilbio.2005.06.026.
- Yoshida, M. and Muramatsu, H. 1998. Performance and hardwood cutting propagation of new apple JM rootstocks in Hokkaido. *Bulletin of Hokkaido Prefectural Agricultural Experiment Stations* (75), 11-4.
- Zhang, M. J., Ding, L. H., Wang, Q., Li, Y. B., Yan, X. K. and Xing, G. J. 2011. Development of cold resistant apple rootstocks in China. *Acta Horticulturae* 903(903), 183-6. doi:10.17660/ActaHortic.2011.903.19.
- Zhang, L. S., Li, X. W., Zhang, L. X., Li, B. Z., Han, M. Y., Liu, F. T., Zheng, P. and Alva, A. K. 2014. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress. *Pakistan Journal of Botany* 46, 117–26.